
New developments on solving AC-OPF on sparse networks

Daniel Bienstock and Gonzalo Muñoz, Columbia University

January 2015



Optimal power flow problem in rectangular coordinates, simplest form

Variables:

• Complex voltages ek + jfk, power flows Pkm, Qkm, auxiliary variables

Notation: For a bus k, δ(k) = set of lines incident with k; V = set of buses

Basic problem

min
∑
k∈V

Ck

s.t. ∀km : Pkm = gkm(e2
k + f 2

k )− gkm(ekem + fkfm) + bkm(ekfm − fkem) (1a)

∀km : Qkm = −bkm(e2
k + f 2

k ) + bkm(ekem + fkfm) + gkm(ekfm − fkem) (1b)

∀km : |Pkm|2 + |Qkm|2 ≤ Ukm (1c)

∀k : Pmin
k ≤

∑
km∈ δ(k)

Pkm ≤ Pmax
k (1d)

∀k : Qmin
k ≤

∑
km∈ δ(k)

Qkm ≤ Qmax
k (1e)

∀k : V min
k ≤ e2

k + f 2
k ≤ V max

k , (1f)

∀k : Ck = Fk

 ∑
km∈ δ(k)

Pkm

 . (1g)

Here, Fk is a quadratic function for each k.



Optimal power flow problem in rectangular coordinates, simplest form

Variables:

• Complex voltages ek + jfk, power flows Pkm, Qkm, auxiliary variables

Notation: For a bus k, δ(k) = set of lines incident with k; V = set of buses

Basic problem

min
∑
k∈V

Ck

s.t. ∀km : Pkm = gkm(e2
k + f 2

k )− gkm(ekem + fkfm) + bkm(ekfm − fkem) (2a)

∀km : Qkm = −bkm(e2
k + f 2

k ) + bkm(ekem + fkfm) + gkm(ekfm − fkem) (2b)

∀km : |Pkm|2 + |Qkm|2 ≤ Ukm (2c)

∀k : Pmin
k ≤

∑
km∈ δ(k)

Pkm ≤ Pmax
k (2d)

∀k : Qmin
k ≤

∑
km∈ δ(k)

Qkm ≤ Qmax
k (2e)

∀k : V min
k ≤ e2

k + f 2
k ≤ V max

k , (2f)

∀k : Ck = Gk

 ∑
km∈ δ(k)

Qkm

 . (2g)

Here, Gk is a quadratic function for each k.



Optimal power flow problem in rectangular coordinates, simplest form

Variables:

• Complex voltages ek + jfk, power flows Pkm, Qkm, auxiliary variables

Notation: For a bus k, δ(k) = set of lines incident with k; V = set of buses

Basic problem

min
∑
k∈V

Ck

s.t. ∀km : Pkm = gkm(e2
k + f 2

k )− gkm(ekem + fkfm) + bkm(ekfm − fkem) (3a)

∀km : Qkm = −bkm(e2
k + f 2

k ) + bkm(ekem + fkfm) + gkm(ekfm − fkem) (3b)

∀km : |Pkm|2 + |Qkm|2 ≤ Ukm (3c)

∀k : Pmin
k ≤

∑
km∈ δ(k)

Pkm ≤ Pmax
k (3d)

∀k : Qmin
k ≤

∑
km∈ δ(k)

Qkm ≤ Qmax
k (3e)

∀k : V min
k ≤ e2

k + f 2
k ≤ V max

k , (3f)

∀k : Ck = Fk

 ∑
km∈ δ(k)

Pkm

 + Gk

 ∑
km∈ δ(k)

Qkm

 . (3g)

Here, Fk, Gk are quadratic functions for each k.



Optimal power flow problem in rectangular coordinates, simplest form

Variables:

• Complex voltages ek + jfk, power flows Pkm, Qkm, auxiliary variables

Notation: For a bus k, δ(k) = set of lines incident with k; V = set of buses

Basic problem

min
∑
k∈V

Ck

s.t. ∀km : Pkm = gkm(e2
k + f 2

k )− gkm(ekem + fkfm) + bkm(ekfm − fkem) (4a)

∀km : Qkm = −bkm(e2
k + f 2

k ) + bkm(ekem + fkfm) + gkm(ekfm − fkem) (4b)

∀km : |Pkm|2 + |Qkm|2 ≤ Ukm (4c)

∀k : Pmin
k ≤

∑
km∈ δ(k)

Pkm ≤ Pmax
k (4d)

∀k : Qmin
k ≤

∑
km∈ δ(k)

Qkm ≤ Qmax
k (4e)

∀k : V min
k ≤ e2

k + f 2
k ≤ V max

k , (4f)

∀k : Ck = Fk

 ∑
km∈ δ(k)

Pkm

 + Gk

 ∑
km∈ δ(k)

Qkm

 . (4g)

Here, Fk, Gk are quadratic functions for each k. Many possibilities, all structurally similar.



Optimal power flow problem in rectangular coordinates, simplest form

Variables:

• Complex voltages ek + jfk, power flows Pkm, Qkm, auxiliary variables

Notation: For a bus k, δ(k) = set of lines incident with k; V = set of buses

Basic problem

min
∑
k∈V

Ck

s.t. ∀km : Pkm = gkm(e2
k + f 2

k )− gkm(ekem + fkfm) + bkm(ekfm − fkem) (5a)

∀km : Qkm = −bkm(e2
k + f 2

k ) + bkm(ekem + fkfm) + gkm(ekfm − fkem) (5b)

∀km : |Pkm|2 + |Qkm|2 ≤ Ukm (5c)

∀k : Pmin
k ≤

∑
km∈ δ(k)

Pkm ≤ Pmax
k (5d)

∀k : Qmin
k ≤

∑
km∈ δ(k)

Qkm ≤ Qmax
k (5e)

∀k : V min
k ≤ e2

k + f 2
k ≤ V max

k , (5f)

∀k : Ck = Fk

 ∑
km∈ δ(k)

Pkm

 + Gk

 ∑
km∈ δ(k)

Qkm

 . (5g)

Here, Fk, Gk are quadratic functions for each k. Many possibilities, all structurally similar.

These are QCQPs, quadratically constrained quadratic programs, with an underlying graph structure.



QCQPs

min xTM 0x + 2cT0 x + d0 (6a)

s.t. ∀km : xTM ix + 2cTi x + di ≥ 0, 1 ≤ i ≤ m, (6b)

x ∈ Rn. (6c)

Each matrix M i symmetric.
This description includes linear inequalities, bounds on individual variables, quadratic/linear equations.



QCQPs

min xTM 0x + 2cT0 x + d0 (7a)

s.t. ∀km : xTM ix + 2cTi x + di ≥ 0, 1 ≤ i ≤ m, (7b)

x ∈ Rn. (7c)

Reformulation

observation: xTM ix + 2cTi x = (1 xT )

(
0 cTi
ci M

i

) (
1
x

)
= (1 xT )M̃ i

(
1
x

)
definition: for matrices A, B, A •B .

=
∑

i,j aijbij

so for vector y and matrix A, yTAy = A • yyT

So QCQP can be rewritten as:

Q∗
.
= min M̃ 0 •X + d0 (8a)

s.t. ∀km : M i •X + di ≥ 0, 1 ≤ i ≤ m, (8b)

X ∈ R(n+1)×(n+1), X � 0, of rank 1. (8c)

The semidefinite relaxation of this problem is:

Q̃
.
= min M̃ 0 •X + d0 (9a)

s.t. ∀km : M i •X + di ≥ 0, 1 ≤ i ≤ m, (9b)

X ∈ R(n+1)×(n+1), X � 0. (9c)

Q̃ ≤ Q∗



The critical observation

• Lavaei and Low, 2011: the SDP relaxation of AC-OPF frequently is
very tight

• This spurred much research

• Jabr, Hiskens and Molzahn, others



The critical observation

• Lavaei and Low, 2011: the SDP relaxation of AC-OPF frequently is
very tight

• This spurred much research

• Jabr, Hiskens and Molzahn, others

• Under constrained conditions, the SDP relaxation can be weak



The critical observation

• Lavaei and Low, 2011: the SDP relaxation of AC-OPF frequently is
very tight

• This spurred much research

• Jabr, Hiskens and Molzahn, others

• Under constrained conditions, the SDP relaxation can be weak

• The SDP relaxation can prove unsolvable for larger grids



The critical observation

• Lavaei and Low, 2011: the SDP relaxation of AC-OPF frequently is
very tight

• This spurred much research

• Jabr, Hiskens and Molzahn, others

• Under constrained conditions, the SDP relaxation can be weak

• The SDP relaxation can prove unsolvable for larger grids

• Factoid: there are polynomial-time algorithms for SDP, but require many
assumptions

• There is no exact algorithm for SDP



The critical observation

• Lavaei and Low, 2011: the SDP relaxation of AC-OPF frequently is
very tight

• This spurred much research

• Jabr, Hiskens and Molzahn, others

• Under constrained conditions, the SDP relaxation can be weak

• The SDP relaxation can prove unsolvable for larger grids

• Factoid: there are polynomial-time algorithms for SDP, but require many
assumptions

• There is no exact algorithm for SDP

• Lavaei, Low, Hiskens-Molzahn:
when the underlying network has low tree-width, the SDP relaxation
can be solved much faster
why: standard SDP solvers can leverage low tree-width

•What exactly is tree-width?



Tree-width

Let G be an undirected graph with vertices V (G) and edges E(G).

A tree-decomposition of G is a pair (T,Q) where:

• T is a tree. Not a subtree of G, just a tree



Tree-width

Let G be an undirected graph with vertices V (G) and edges E(G).

A tree-decomposition of G is a pair (T,Q) where:

• T is a tree. Not a subtree of G, just a tree

• For each vertex t of T , Qt is a subset of V (G). These subsets satisfy
the two properties:



Tree-width

Let G be an undirected graph with vertices V (G) and edges E(G).

A tree-decomposition of G is a pair (T,Q) where:

• T is a tree. Not a subtree of G, just a tree

• For each vertex t of T , Qt is a subset of V (G). These subsets satisfy
the two properties:

(1) For each vertex v of G, the set {t ∈ V (T ) : v ∈ Qt} is a subtree
of T , denoted Tv.



Tree-width

Let G be an undirected graph with vertices V (G) and edges E(G).

A tree-decomposition of G is a pair (T,Q) where:

• T is a tree. Not a subtree of G, just a tree

• For each vertex t of T , Qt is a subset of V (G). These subsets satisfy
the two properties:

(1) For each vertex v of G, the set {t ∈ V (T ) : v ∈ Qt} is a subtree
of T , denoted Tv.

(2) For each edge {u, v} of G, the two subtrees Tu and Tv intersect.



Tree-width

Let G be an undirected graph with vertices V (G) and edges E(G).

A tree-decomposition of G is a pair (T,Q) where:

• T is a tree. Not a subtree of G, just a tree

• For each vertex t of T , Qt is a subset of V (G). These subsets satisfy
the two properties:

(1) For each vertex v of G, the set {t ∈ V (T ) : v ∈ Qt} is a subtree
of T , denoted Tv.

(2) For each edge {u, v} of G, the two subtrees Tu and Tv intersect.

• The width of (T,Q) is maxt∈T |Qt| − 1.

width = 3

width = 2

1

2

3

4

5 6

1

2 3 1 3

54
5

3
5

5
4

2 51

1

1 3
6

6



Tree-width

Let G be an undirected graph with vertices V (G) and edges E(G).

A tree-decomposition of G is a pair (T,Q) where:

• T is a tree. Not a subtree of G, just a tree

• For each vertex t of T , Qt is a subset of V (G). These subsets satisfy
the two properties:

(1) For each vertex v of G, the set {t ∈ V (T ) : v ∈ Qt} is a subtree
of T , denoted Tv.

(2) For each edge {u, v} of G, the two subtrees Tu and Tv intersect.

• The width of (T,Q) is maxt∈T |Qt| − 1.

1

2

3

4

5 6

→ two subtrees Tu, Tv may overlap even if {u, v} is not an edge of G



History

Fulkerson and Gross (1965), binary packing integer programs

IP = max cTx (10a)

s.t. Ax ≤ b, (10b)

x ∈ {0, 1}n (10c)

Here, A is has 0, 1-valued entries. Idea: use the structure of A.
The intersection graph of A, GA, has:

• A vertex for each column of A.

• An edge between two columns j, k if there is a row iwith aij 6= 0, aik 6= 0.

1

1

1

1 1

1 1 1

1

1

1      2       3     4       5

1

3

2

5

4



History

Fulkerson and Gross (1965), binary packing integer programs

IP = max cTx (11a)

s.t. Ax ≤ b, (11b)

x ∈ {0, 1}n (11c)

Here, A is has 0, 1-valued entries. Idea: use the structure of A.
The intersection graph of A, GA, has:

• A vertex for each column of A.

• An edge between two columns j, k if there is a row iwith aij 6= 0, aik 6= 0.

1

1

1

1 1

1 1 1

1

1

1      2       3     4       5

1

3

2

5

4

Each row of A induces a clique of GA.



History

Fulkerson and Gross (1965), binary packing integer programs

IP = max cTx (12a)

s.t. Ax ≤ b, (12b)

x ∈ {0, 1}n (12c)

Here, A is has 0, 1-valued entries. Idea: use the structure of A.
The intersection graph of A, GA, has:

• A vertex for each column of A.

• An edge between two columns j, k if there is a row i with aij 6= 0, aik 6= 0.

Theorem. If GA is an interval graph, then

IP = LP = max cTx (13a)

s.t. Ax ≤ b, (13b)

x ∈ [0, 1]n. (13c)

(so IP = value of its continuous relaxation).

A graph G = (V,E) is an interval graph, if there is a path P , and a
family of subpaths Pv (one for each v ∈ V ), such that

• For each pair of vertices u and v of G, we have {u, v} ∈ E
whenever Pu and Pv intersect.

• The largest clique size of G is maxp∈P |{v ∈ V : p ∈ Pv}|.
(The maximum number of subpaths that simultaneously overlap anywere on P )



IP = max cTx (14a)

s.t. Ax ≤ b, (14b)

x ∈ {0, 1}n (14c)

The intersection graph of A, GA, has:

• A vertex for each column of A, an edge between two columns j, k if there is a row i with aij 6= 0, aik 6= 0.

Definition: (Gavril, 1974) A graph G = (V,E) is chordal, if there
exists

• A tree T , and a family of trees Pv (one for each v ∈ V ), such that

• For each pair of vertices u and v of G, we have {u, v} ∈ E
whenever Tu and Tv intersect.

• The largest clique size of G is maxt∈T |{v ∈ V : t ∈ Tv}|.
(The maximum number of subtrees that simultaneously overlap anywere on T )

(equivalent: a graph is chordal iff every cycle of length > 3 has a chord).



Contrast with tree-decompositions

A tree-decomposition of G is a pair (T,Q) where:

• T is a tree. Not a subtree of G, just a tree.

• For each vertex t of T , Qt is a subset of V (G). These subsets satisfy
the two properties:

(1) For each vertex v of G, the set {t ∈ V (T ) : v ∈ Qt} is a subtree
of T , denoted Tv.

(2) For each edge {u, v} of G, the two subtrees Tu and Tv intersect.

• The width of (T,Q) is maxt∈T |Qt| − 1.

1

2

3

4

5 6

→ two subtrees Tu, Tv may overlap even if {u, v} is not an edge of G

So: A graph G has a tree-decomposition of width w iff there is a chordal
supergraph of G of clique number w + 1.



IP = max cTx (15a)

s.t. Ax ≤ b, (15b)

x ∈ {0, 1}n (15c)

The intersection graph of A, GA, has:

• A vertex for each column of A, an edge between two columns j, k if there is a row i with aij 6= 0, aik 6= 0.

Definition: (Gavril, 1974) A graph G = (V,E) is chordal, if there exists

• A tree T , and a family of subtrees Pv (one for each v ∈ V ), such that

• For each pair of vertices u and v of G, we have {u, v} ∈ E iff Tu and Tv intersect.

• The largest clique size of G is maxt∈T |{v ∈ V : t ∈ Tv}|.
(The maximum number of subtrees that simultaneously overlap anywere on T )

(equivalent: a graph is chordal iff every cycle of length > 3 has a chord).

Theorem. If GA is chordal, then

IP = LP = max cTx (16a)

s.t. Ax ≤ b, (16b)

x ∈ [0, 1]n. (16c)

(so IP = value of its continuous relaxation).

Chordal graphs are “nice.” In fact, they are perfect.



Why small tree-width helps

Cholesky factorization of:

A =



∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗





Cholesky factorization of:

1

2

3 4

5

6

7 8



Chordal supergraph:

1

2

3 4

5

6

7 8

Pivoting order: 1, 2, 5, 6, 7, 8, 3, 4



Graph Minors Project: Robertson and Seymour, 1983 - 2004

→ Tree-width as a measure of the complexity of a graph



CAUTION



CAUTION

sparsity 6= small tree-width



CAUTION

sparsity 6= small tree-width

∃ graphs of max deg 3 and arbitrarily high tree-width



Graph Minors Project: Robertson and Seymour, 1983 - 2004

→ Tree-width as a measure of the complexity of a graph

• Algorithms community: small tree-width makes hard problems easy (late
1980s)

•Many NP-hard problems can be solved in polynomial time on graphs with
small tree-width:
TSP, max. clique, graph coloring, ...



Graph Minors Project: Robertson and Seymour, 1983 - 2004

→ Tree-width as a measure of the complexity of a graph

• Algorithms community: small tree-width makes hard problems easy (late
1980s)

•Many NP-hard problems can be solved in polynomial time on graphs with
small tree-width:
TSP, max. clique, graph coloring, ...

• Fellows & Langston; Bienstock & Langston; Arnborg, Corneil & Proskurowski;
many other authors

• Common thread: exploit tree-decomposition to obtain good algorithms

• So-called “non-sequential dynamic programming”



partial tree−decomposition



partial tree−decomposition

’ boundary ’



partial tree−decomposition

’ boundary ’



optimize in partial tree−decomposition

subject to ’ boundary conditions ’

partial tree−decomposition

enumerates several cases



optimize in partial tree−decomposition

subject to ’ boundary conditions ’

partial tree−decomposition

enumerates several cases

also enumerate similar cases involving

the new set, and match



Graph Minors Project: Robertson and Seymour, 1983 - 2004

→ Tree-width as a measure of the complexity of a graph

• Algorithms community: small tree-width makes hard problems easy (late
1980s)

•Many NP-hard problems can be solved in polynomial time on graphs with
small tree-width:
TSP, max. clique, graph coloring, ...

• Fellows & Langston; Bienstock & Langston; Arnborg, Corneil & Proskurowski;
many other authors

• Common thread: exploit tree-decomposition to obtain good algorithms

• So-called “non-sequential dynamic programming”

→ Can we do the same for OPF ?



Theorem: Given an instance of AC-OPF on a graph with a tree-decomposition
of width ω, and n buses, and 0 < ε < 1,

there is a linear program LP such that:

(a) The number of variables and constraints is O( 22ω ω n ε log ε−1 ).

(b) An optimal solution to LP solves AC-OPF, within tolerance ε.



More generic statement for AC-OPF

min
∑
k∈V

Ck

s.t. ∀km : Pkm = gkm(e2
k + f 2

k )− gkm(ekem + fkfm) + bkm(ekfm − fkem)

∀km : Qkm = −bkm(e2
k + f 2

k ) + bkm(ekem + fkfm) + gkm(ekfm − fkem)

∀km : |Pkm|2 + |Qkm|2 ≤ Ukm

∀k : Pk =
∑

km∈ δ(k)

Pkm; Pmin
k ≤ Pk ≤ Pmax

k

∀k : Qk =
∑

km∈ δ(k)

Qkm; Qmin
k ≤ Qk ≤ Qmax

k

∀k :
(
V min
k

)2 ≤ e2
k + f 2

k ≤
(
V max
k

)2
∀k : Ck = Fk (Pk, Qk, ek, fk) +

∑
km∈ δ(k)

Hkm(Pkm, Qkm, ek, fk, em, fm)

Here, the Fk and Hkm are quadratics.



A generalization: graphical QCQPs (abridged)

Inputs:

(1) An undirected graph H .

(2) For each vertex v of H a set J(v), and for j ∈ J(v) there is a real
variable xj.
Write V = ∪v∈V (H)J(v).

(3) For each edge {v, u} denote by xv,u the vector of all xj for j ∈ J(v) ∪ J(u).

(4) For each vertex v, and each edge {v, u} a family of quadratics pkv,u(x
v,u)

for k = 1, . . . , N(v).

(5) A vector c ∈ RV .



A generalization: graphical QCQPs (abridged)

Inputs:

(1) An undirected graph H .

(2) For each vertex v of H a set J(v), and for j ∈ J(v) there is a real variable xj .
Write V = ∪v∈V (H)J(v).

(3) For each edge {v, u} denote by xv,u the vector of all xj for j ∈ J(v) ∪ J(u).

(4) For each vertex v, and each edge {v, u} a family of quadratics pk
v,u(xv,u) for k = 1, . . . , N(v).

(5) A vector c ∈ RV .

Problem:

(GQCQP): min cTx

subject to:
∑
u∈δ(v)

pv,u,k(x
v,u) ≥ 0, v ∈ V (H), k = 1, . . . , N(v)

0 ≤ xj ≤ 1, ∀ j ∈ V .



A generalization: mixed-integer graphical QCQPs (abridged)

Inputs:

(1) An undirected graph H .

(2) For each vertex v of H a set J(v), and for j ∈ J(v) there is a real
variable xj.
Write V = ∪v∈V (H)J(v).

(3) For each edge {v, u} denote by xv,u the vector of all xj for j ∈ J(v) ∪ J(u).

(4) For each vertex v, and each edge {v, u} a family of quadratics pkv,u(x
v,u)

for k = 1, . . . , N(v).

(5) A vector c ∈ RV .

(6) A partition V = VZ ∪ VR.



Problem:

(MGP): min cTx

subject to:
∑
u∈δ(v)

pv,u,k(x
v,u) ≥ 0, v ∈ V (H), k = 1, . . . , N(v)

0 ≤ xj ≤ 1 ∀ j ∈ VR; xj = 0 or 1 ∀ j ∈ VZ.



(1) An undirected graph H .

(2) For each vertex v of H a set J(v), and for j ∈ J(v) there is a real variable xj .
Write V = ∪v∈V (H)J(v).

(3) For each edge {v, u} denote by xv,u the vector of all xj for j ∈ J(v) ∪ J(u).

(4) For each vertex v, and each edge {v, u} a family of polynomials pk
v,u(xv,u) for k = 1, . . . , N(v).

(5) A vector c ∈ RV .

(6) A partition V = VZ ∪ VR.

(MGP): min cTx (20a)

subject to:
∑
u∈δ(v)

pv,u,k(x
v,u) ≥ 0, v ∈ V (H), k = 1, . . . , N(v) (20b)

0 ≤ xj ≤ 1 ∀ j ∈ VR; xj = 0 or 1 ∀ j ∈ VZ . (20c)

Theorem: Given an instance of MGP on a graph with a tree-decomposition
of width ω, there is an equivalent instance of MGP on a graph

•With tree-width ≤ 2ω + 1

• Of maximum degree 3.

Remark. If we start with an instance of AC-OPF, the equivalent problem
is no longer an AC-OPF problem.



Approximation (Glover, 1975)(abridged)

Let x be a variable, with bounds 0 ≤ x ≤ 1. Let 0 < γ < 1. Then we
can approximate

x ≈
∑L

i=1 2−iyi

where each yi is a binary variable. In fact, choosing L = dlog2 γ
−1e,

we have

x ≤
∑L

i=1 2−iyi ≤ x+ γ.

So: given an instance of MGP , approximate each continuous variable xj
in this manner.



Theorem: Consider an instance I of problem MGP, with n variables.
Then there is another instance, B of MGP, with

(1) B is defined on the same graph as I .

(2) all variables in B are binary.

(3) For each continuous variable xj of I , we now have log2 J
∗ log ε−1

binary variables used to approximate xj.

(4) Solving B to exact optimality yields a solution to I within tolerance ε.

J∗ = size of largest set J(v). (AC-OPF ⇒ J∗ = 2)



Review

(1) A mixed-integer, graphical polynomial optimization problem on a graph
with a tree-decomposition of width ω.



Review

(1) A mixed-integer, graphical polynomial optimization problem on a graph
with a tree-decomposition of width ω.

(2) An equivalent mixed-integer, graphical polynomial optimization problem
on a graph with a tree-decomposition of width O(ω) and degree ≤ 3.



Review

(1) A mixed-integer, graphical polynomial optimization problem on a graph
with a tree-decomposition of width ω.

(2) An equivalent mixed-integer, graphical polynomial optimization problem
on a graph with a tree-decomposition of width O(ω) and degree ≤ 3.

(3) An all-binary, graphical polynomial optimization problem on the same
graph which is equivalent to the problem in (2) within tolerance ε. The
sets J(v) have grown by a factor of log2 J

∗ log2 ε
−1.



Ancient History of this Talk

Fulkerson and Gross (1965), binary packing integer programs

IP = max cTx (21a)

s.t. Ax ≤ b, (21b)

x ∈ {0, 1}n (21c)

Here, A is has 0, 1-valued entries. Idea: use the structure of A.

The intersection graph of A, GA, has:

• A vertex for each column of A.

• An edge between two columns j, k if there is a row i with aij 6= 0, aik 6= 0.

1

1

1

1 1

1 1 1

1

1

1      2       3     4       5

1

3

2

5

4

Each row of A induces a clique of GA.



Review

(1) A mixed-integer, graphical polynomial optimization problem on a graph with a tree-decomposition
of width ω.

(2) An equivalent mixed-integer, graphical polynomial optimization problem on a graph with a tree-
decomposition of width O(ω) and degree ≤ 3.

(3) An all-binary, graphical polynomial optimization problem on the same graph which is equivalent
to the problem in (2) within tolerance ε. The sets J(v) have grown by a factor of log2 J

∗ log2 ε
−1.

(4) Corollary. The intersection graph of the problem in (3) has a tree-decomposition of width at
most

O(ω J∗ log2 J
∗ log2 ε

−1)

Note: There are two graphs. The initial graph used to define the problem, and the intersection graph
for the constraints in (3).



Pièce de Résistance

Theorem. Given an all-binary problem on n variables and whose inter-
section graph has a tree-decomposition of width k, then there is an exact
linear programming representation using

O(2kn)

variables and constraints.

Construction similar to Lovász-Schrijver, Sherali-Adams, Lasserre, Bienstock-Zuckerberg



Pièce de Résistance

Theorem. Given an all-binary problem on n variables and whose inter-
section graph has a tree-decomposition of width k, then there is an exact
linear programming representation using

O(2kn)

variables and constraints.

Construction similar to Lovász-Schrijver, Sherali-Adams, Lasserre, Bienstock-Zuckerberg

(A) A mixed-integer, graphical polynomial optimization problem, with N
variables, on a graph with a tree-decomposition of width ω.
J∗ = size of largest set J(v). (AC-OPF J∗ = 2)



Pièce de Résistance

Theorem. Given an all-binary problem on n variables and whose inter-
section graph has a tree-decomposition of width k, then there is an exact
linear programming representation using

O(2kn)

variables and constraints.

Construction similar to Lovász-Schrijver, Sherali-Adams, Lasserre, Bienstock-Zuckerberg

(A) A mixed-integer, graphical polynomial optimization problem, with N
variables, on a graph with a tree-decomposition of width ω.
J∗ = size of largest set J(v). (AC-OPF J∗ = 2)

(B) A linear program that solves the problem in (A) within tolerance ε,
of size

O( 2O(ωJ∗) ω J∗ ε−1N)



Should we able to do better?

Probably.

But.

• There are trivial AC-OPF problems where there is a unique feasible solu-
tion and it is irrational.
Under the bit model of computing we cannot produce an “exact” answer.

• AC-OPF is weakly NP-hard on trees. Lavaei and Low (2011), a more
recent proof by Coffrin and van Hentenryck.

• AC-OPF is strongly NP-hard on general graphs. A. Verma (2009). So no
strong approximation algorithms exist unless P = NP.


