MOTIVATIONS

1. Emerging technologies are changing
the way power grids operate

2. The existing planning and operation
computational techniques have to be
reassessed (£)

3. Variations in the grids (e.g. mechani-

cal torques, topology) result in differ-
ent operating conditions
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PROBLEMS

We consider two stability assessment prob-
lems of power grids:

Transient stability: Estimate the region of
attraction of the stable equilibrium point 0* =
0%,...,0%.0,...,011, ie. the set of initial condi-
tions {64(0), 0, (0)}72_, starting from which the
system (1)-(2) converges to 0*.

LFF APPROACH

Nonlinearity separation and bounding
= Ax — BF(Cx) (4)

L = [517'°'75m7517°°'75m75m—|—17'°'75n]T
F(Cx) = [(sin dg; — sin 67 .)] %, .

Robust transient stability: Certify the sta- (©) = [lsinds, )k e
bility of the system (1)-(2), where the mechanical
torques Py, are varying such that the stable equi-
librium point 0™ 1s in the polytope © defined by
the inequalities |0} .| < Ag;.
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CONTRIBUTIONS

. Introduced the LFF approach to cer- R T e M I
tifty the transient stability of structure- FIG. 1: Linear bounding of the nonlinear couplings
preserving multimachine power grids Lyapunov Functions Family

. This approach is applicable to lossy
power grids, which is impossible by
the standard energy methods

. Presented optimization and LMI-based
techniques to explicitly construct the
stability certificates and to adapt the
Lyapunov functions to initial states i R*

. Posed a new control problem of sta-
bility assessment for systems with un-
known equilibria

. Applied the LFF approach to uncertain
power grids with unknown equilib-
rium points and provided robust sta-
bility certificates
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where (), K, H are solutions of the LMIs:
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with R = QB — CTH — (KCA)T.
Then, V(x) < 0 for any state = stays within
the polytope P := {x : |0g; + 05| < 7}

Adaptation to Initial States

Let € be a positive constant.

Step 1: Find Q), KM, H(Y) by solving (5).
Step n: Find QU , K™ H™ by solving the
following LMIs:
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FUTURE DIRECTIONS (BT —2H™ |7
1. Extend the LFF stability assessment ap- V) (zg) < V,n(;;’; D

proach to more realistic models of genera-

tors, loads, and transmission network: Once infeasible, € is replaced by €/2.

e Structure-preserving models with reac-
tive powers: extending the nonlinear-
ity F
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dk5kz — _Pc(l)k — Z Vk‘/jBkjSiIl(5k — 5]'),

STRUCTURE PRESERVING DYNAMICAL SWING EQUATIONS

Consider the structure-preserving model of power grids described by the swing equations:

k=1,....m (1)

Ek=m+1,...,n (2)

The operating condition is characterized by the angle differences o5, = d;; — 0} satistying:

Z VkVyBkj Sin5zj — Pk,k — 1, cee sy L (3)

RESULTS

Let Vinin := min V(z). Then, the set
recoPout

R =4{x € P : V(zr) < Vun} is invariant,
and an estimate of stability region of the SEP 0*.
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FIG. 2: Stability region estimates are intersections of the

Lyapunov function sublevel sets and P
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FIG. 4: Robust stability of {§g = —2,0¢9 = 2} when §*
is in the set —m/6 — 0.05 < §* < 71/6 — 0.05
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