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Introduction

Vehicles obtaining some or all of their energy from the electricity grid, as Plug-
in (hybrid) Electric Vehicles (PEVs), may achieve significant market penetration
over the next few years. This raises the question of how to optimally fulfill the
corresponding energy requirement, by regulating the collective charging profile
of large populations of PEVs, while guaranteeing the interest and the privacy of
the users.

Here we address this task using a mean field game theoretical approach [1,2].
We consider PEVs as heterogeneous agents, with different charging constraints
(plug-in times and deadlines), that minimize their own charging cost and are
weakly coupled via a common electricity price.

Problem Formulation

Consider a charging horizon of T time steps. Let un = [un,1, . . . ,un,T ]> be the
vector of the energy required by vehicle n ∈ {1, . . . ,N}, which must belong to
the personalized constraint set

Un :=
{

un ∈ RT |
∑

t

un,t = γn, 0 ≤ un,t ≤ Mn,t } ,

and p
(
uavg

t

)
:=a(uavg

t + dt), a>0, be an affine price function that depends on the
total energy demand at time t . Each agent minimizes its charging cost by solving

u?n
(
{ui}N

i 6=n

)
:= arg min

un

∑
t

p
(
uavg

t

)
un,t (1)

s.t. un ∈ Un

which leads to the aggregate behavior

uavg =
1
N

N∑
n=1

un.

As shown in Figure 1 (left) if uncontrolled the total energy demand may present
undesirable peaks.

Figure 1 : Total energy demand divided by the number of vehicles N, according to different charging policies. The
black line is the normalized base load demand dt .

Nash Equilibrium

A set of strategies {ūn}N
n=1 is stable if no agent has interest in deviating from its

strategy given what the others are doing. Formally it is an ε-Nash equilibrium if

J(ūn|{ūi}N
i 6=n) ≤ J(un|{ūi}N

i 6=n) + ε ∀un ∈ Un.

It was proven in [3], that the Nash equilibrium of problem (1), in the absence of
upper bounds, is valley-filling, see Figure 1 (right). Hence the Nash equilibrium
is both valley-filling and socially fair.

To steer the population to such desirable equilibrium we consider a quadratic
relaxation of the original problem using the modified cost

Jδ(uavg) :=
∑

t

p
(
uavg

t

)
un,t + δ(un,t − uavg

t )2

where the parameter δ > 0 has to be as small as possible. Note that, in the limit
of infinite population size, the average uavg can be though of as an exogenous
signal z that must satisfy

A(z) :=
1
N

N∑
n=1

u?n (z) :=
1
N

N∑
n=1

arg min
un∈Un

Jδ(z) = z.

z̄ fixed point of the aggregation mapping A(·)
⇓

{u?n (z̄)}N
n=1 is an ε-Nash equilibrium, with ε ∼ O(1/N)
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A Mean Field Control Algorithm

In order to find the fixed point of the aggregation mapping we consider an itera-
tive scheme between

I a central operator that broadcasts at each iteration k the price signal p(zk),

zk := Φk−1(zk−1,A(zk−1));

I the agents that respond by computing u?n (zk);
I an aggregator that computes A (zk) and send it back to the central operator.

The iteration-dependent feedback mapping Φk(·, ·) should be selected such that
the algorithm converges to a fixed point of the aggregation mapping. To this end,
we consider two fixed point iteration mappings

Picard-Banach [3] : ΦP–B(zk ,A(zk)) := A(zk)

Mann [4] : ΦM
k (zk ,A(zk)) := (1− αk)zk + αkA(zk), αk ∝ 1/k

The following convergence guarantees hold

ΦP–B ΦM

δ > a/2 X X
δ > 0 X

Simulation

The use of the Mann iteration instead of the Picard-Banach allows one to find
the fixed point for arbitrarily small values of δ, hence allowing to recover the
Nash-equilibrium of the original Problem (1), [4]
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Figure 2 : Normalized total energy consumption relative to the Nash-equilibrium for different values of δ.

Generalization

The above results can be generalized to the broader class of quadratic, convex
constrained, mean field games where each agent computes

x?n (z) := arg min
x

x>Qx + (x− z)>∆ (x− z) + 2 (Cz + c)> x

s.t. x ∈ Xn

In [5], it is proven that, under different conditions on the matrices Q,∆,C, dif-
ferent feedback mappings Φ(z,A(z)) can be used to steer the population to an
ε-Nash equilibrium, with ε ∼ O(1/N).
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