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1. Optimization problems.
2. Karush-Kuhn-Tucker conditions, KKT.
3. Constraint qualifications.

4. Sufficiency conditions for optimality:.
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Optimization problem
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Optimization problem

Optimization problem
Minimize,
S. 1.
h(z) =0
g(x) <0

VAN

flz)



Optimization problem

r € IR" is the optimization variable vector,

- R" —

- R" — |

. IR" — IR is the objective function,

IR™F are the equality constraints and

R™ are the inequality constraints.



Optimization problem

Any z € IR" is called a solution.

A solution meeting the constraints is called a feasible
solution.

A feasible solution minimizing the objective function is
called an optimal solution or a minimaizer.

The objective function value at the minimizer is the
objective function optimal value.
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Optimization problem

The set of solutions meeting both h(z) = 0 and g(x) < 0
constitutes the feasible region.

Minimizing f(z) is equivalent to maximizing — f(x).

A variety of algorithms are available to numerically solve
these problems.
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Optimization problem

Optimization Problem (OP)

Objective function (minimize or maximize)

subject to:

Equality constraints
Inequality constraints
Bound on variables




Constrained OP example



Constrained OP example

We consider a producer ¢ with the linear production cost
¢i = a; + bi(s; + fi)
¢; 1s the cost function,

a; 1S the no-production fixed cost,

b; 1s the linear production cost, and

f; and s; are the quantities sold by the producer in the
futures and the spot markets, respectively.
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Constrained OP example

a; and b; are constants,

fi and s; are decisions variables (what the producer must

decide), and

¢; 1s a function of the decision variables.
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Constrained OP example

The futures and spot markets (two trading floors) are
assumed to be cleared sequentially,

first the futures market and then

the spot market.



Constrained OP example

We consider two producers (i = 1,2) and a single price
for both the spot and the futures markets, which depends
linearly on the total production, i.e.,

m=7—PB(s1+s2+ f1 + f2)

where 7 is the actual price, v > 0 is the no-demand price
and 0 > 0 is the price-demand slope.
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Constrained OP example

The above implies no arbitrage (no possibility of advan-
tageous trading) between the spot and the futures
market.

~v and 3 are constants,
s1, S9, f1 and fy are decisions variables, and

the price 7 is a function of the decision variables.



Constrained OP example

Fixing the production in the futures market and the pro-
duction of producer 2, the profit maximization problem
of producer 1 in the spot market is

Minimize, ., s, — 7S1+ €

S. t.
T =7 — B(s1+ 52+ f1 + fo)
cp =ay + bi(f1+ s1)
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Constrained OP example

The objective function is the negative profit of producer
1: minus revenue plus cost.

The price and the cost are explicitly stated as 1st and
2nd constraints, respectively.

Production s; needs to be nonnegative but this is not
explicitly imposed for simplicity.

The optimization variables are m, ¢; and s;.
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Constrained OP example

Incorporating the cost into the objective function, the
problem can be written as

Minimize, g, — ws1 + [a1 + bl(fl -+ 31)}
S. 1.

—Tm+y—0B(s1+s2+ fi+ f2) =0



Constrained OP example

The above two problems are instances of equality con-
strained optimization problems.



Constrained OP example (data)

v =100 $/MWHh,

3 = $0.005/(MWh)?,

a; = $30, 000,

as = $50, 000,

by = $40/MWHh,

by = $50/MWh,

f1 = fo =200 MWh, and
s9 = 2000 MWh.



Constrained OP example

Using these data, the 1st problem becomes

Minimize, ., s, — TS1+ €
S. t.
m = 100 — 0.005(s; + 2400)
c; = 30,000 + 40(200 + s;)



Constrained OP example

The 2nd optimization problem becomes

Minimize, s, — ms; + 30,000 + 40(200 + s1)
S. t.
— 7+ 100 — 0.005(s; + 2400) = 0



Constrained OP example

variables z, pi, cl, s1;

equations of, price, cost;

of .. z =e= -pi*sl + cl;

price .. pl =e= 100 - 0.005*(s1+2400);
cost .. cl =e= 30000 + 40*(200+s1);
model producerl including /all/;

solve producerl using nlp minimizing z;



Constrained OP example

---- EQU
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of . .
price 88.000 88.000
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Unconstrained OP example



Unconstrained OP example

Incorporating the price into the objective function, the
unconstrained problem below is obtained

Minimizeg,

— v — B(s1 +s2+ fi + fa)] 51+ a1 + b1 (f1 + s1)



Unconstrained OP example

The optimal solution of this problem is

v —b1— B(s2 + [1+ f2)

20
Check that this is the optimal and unique solution of the
problem!

S1 —



Unconstrained OP example

Considering numerical values:

Minimizes,

— (100 — 0.005(s1 4 2000 + 200 + 200))s; + 30,000 + 40(200 + s1)



Unconstrained OP example

The figure below depicts the objective function.

The negative profit is a quadratic function of s; that
reaches its minimum at s; = 4800 MWh.

This production level corresponds to a profit of $77, 200.
From the price equation we obtain 7 = 64 $/MWh.



Unconstrained OP example
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OP example:
equality and inequality constraints



OP example:
equality and inequality constraints

If a bound is imposed on the production for the spot
market by producer 1, s; < s, then

Minimize, s, — w81 + [al + b1(f1+ 31)}

S. 1.
—T+y—pB(s1ts2+ fit+ fo) =0
Sl—S?axgo



OP example:
equality and inequality constraints

The objective function is the negative profit of producer
l: — revenue + cost.

The first constraint expresses the price as a function of
total production in both the spot and the futures
market.

The second constraint is a capacity bound on the pro-
duction of producer 1.



OP example:
equality and inequality constraints

This problem is an equality and inequality constrained
optimization problem.



OP example:
equality and inequality constraints

If the inequality constraint is binding for a particular s;
value (i.e., it holds as an equality), the optimal solution
1S

S1 =87

T=7—B(s1" +s2+ fi+ f2)



OP example:
equality and inequality constraints

If the inequality constraint is not binding, the optimal
solution is equal to the one in the previous problem.



OP example:
equality and inequality constraints

Considering the figure:

It 7" > 4800 MWh the optimal solution does not
change with s7"** and is s; = 4800 MWh.

However, if si"™* < 4800 MWh the optimal solution is

- max



OP example:
equality and inequality constraints
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Linear Optimization Problem
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Linear Optimization Problem

A particular class of optimization problems are linear
programming (LP) problems:

Minimize, ¢’z

S. t.



Linear Optimization Problem

ceR" beR™ Aec IR™", and superscript ! indi-
cates transpose.

The optimization variable vector is x € IR".

Constraints Az > b can be alternatively stated as Az =
b by adding additional optimization (slack) variables.



Linear Optimization Problem

Linked to a primal LP problem is its dual LP problem:

Maximize, M'b
S. t.

where the optimization variable vector is A € IR™.
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Linear Optimization Problem

The Strong Duality Theorem that states that
if x is an optimal solution of the primal problem and
A is an optimal solution of the dual problem,

then

o= \b
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Linear Optimization Problem

Also, at an optimal solution,

)\‘_A(CTSC) v
N T

for small enough values of Ab; (change in b;).



Linear Optimization Problem

A; 1s the sensitivity of the objective function of the primal
problem (at the optimal solution) with respect to the
right-hand-side parameter b; of that primal problem.



Linear Optimization Problem: example

Consider the following LP problem:

Minimize,, ,, 3z — 29
S. t.

— 1 — X9 > —3

201 — 19 > 1

whose optimal solution is (z1,22) = (5, 2), with an opti-
mal objective function value of %



Linear Optimization Problem: example
The dual LP problem is

Maximizey, n, — 3A1 + Ao
S. t.

— A1 +2X0 <3

— A1 — Ay < =2

A1 >0

Ay > (0

The optimal solution is (A1, Ag) = (

)

L=
Lo |
S—



Linear Optimization Problem: example

At this optimal solution, the objective function value is
2
3
the primal problem.

and coincides with the objective function value of

This is what the Strong Duality Theorem says.



Linear Optimization Problem: example

We consider below a modified version of the primal prob-

lem
Minimize,, ,, 371 — 229 (1a)
s. 1.
— T — X9 > —4 (1b)
20) —x9 > 1 (1c)
r1 > 0 (1d)
x9 >0 (le)

with a different right-hand-side in the first equation, —4
instead of —3.



Linear Optimization Problem: example

The optimal solution of the primal problem is (x1, z3) =

1
(2, 1), with an objective function value of 3



Linear Optimization Problem: example

At the optimal solution, the sensitivity of the objective

function with respect to the right-hand-side of the

.1
first equation is 3

That is, a decrease of 1 unit in the right-hand-side of

the first equation translates into a decrease in the

1
objective function value of 3

This is the value of A\{, as stated in the sensitivity equa-
tion above.



Examples: LP



Example 1: primal &dual LPs

Primal

variable pz;
positive variables

equations
op, pg, pe, pl;

op..
PE. -
pe..
pl..

10*x1
1*x1
6*x1
20*x1

+
+
+
+

4*x2
2*x2
1*x2
14*x2

model three /all/;

solve three using 1lp

x1l, X2,

24*x3
1*x3
2*x3
1*x3

+ + + +

X3;

=e= pz;
=g= 6@;
=e= 50;
=1= 400;

minimizing pz;



Example 1: primal &dual LPs
Primal (only =)

variable pz;
positive variables x1, x2, x3;

equations
op, pg, pe, pl;

op.. 10*x1 + 4*x2 + 24*x3 =e= pz;
pPg. . 1*x1 + 2*x2 + 1*x3 =g=  60;
pe.. 6*x1 + 1*x2 + 2*x3 =e= 50;
pl.. -20*x1 - 14*x2 - 1*x3 =g= -400;

model three /all/;
solve three using lp minimizing pz;



Example 1: primal &dual LPs

Dual

variables dz, y2;
positive variable y1;
negative variable y3;

equations
od, di, d2, d3;

od..
di..
d2..
d3..

60*y1
1*y1l
2%yl
1*yl

+
+
+
+

model dthree
solve dthree

50*y2 + 400*y3 =e= dz;
6*y2 + 20*y3 =1= 10;
1*y2 + 14*y3 =1= 4;
2*¥y2 + 1*y3 =1= 24;

/all/;
using lp maximizing dz;



Example 1: primal &dual LPs
Dual (primal only >)

variables dz, y2;
positive variable y1, y3;

equations
od, di, d2, d3;

od.. 60*yl + 50*y2 - 400*y3 =e= dz;
di.. 1*yl + 6%*y2 - 20*y3 =1= 10;
d2.. 2*yl + 1*y2 - 14*y3 =1= 4;
d3.. 1*yl + 2*y2 - 1*y3 =1= 24;

model dthree /all/;
solve dthree using lp maximizing dz;



Examp|e 1 variable z;

positive variables x1, x2, x3;

Prima| & var'%at.)les y2;
positive variable y1;
dua & negative variable y3;
equation of;
StI”O ’]g equations pg, pe, pl;
Cj -t equations dl, d2, d3;
udall V equation sde;
: of.. z =e= X1+x2;
equallty pg.. 1*x1 + 2*x2 1*x3 =g= 60;

J
2*x3 =e= 50;
1*x3 =1= 400;

pe.. 6*x1 + 1*x2
pl.. 20*x1 + 14*x2
di.. 1*yl + 6%*y2 20*y3 =1= 10;

d2.. 2*yl + 1%*y2 14*y3 =1= 4;

d3.. 1*yl + 2*y2 + 1*y3 =1= 24;

sde .. 10*x1 + 4*x2 + 24*x3 =e= 60*yl + 50*y2 + 400*y3;
model pdthree /all/;

solve pdthree using lp maximizing z;

+ + + + +



Example 2: primal &dual LPs
Primal

variables zp, x11, x12, x13, x21, x22, x23;
positive variables x11, x12, x13, x21, x22, x23;
equations of, supplyl, supply2, demandl, demand2, demand3;

of .. zp =e= 0.225*x11 + 0.153*x12 + 0.162*x13 +
0.225*x21 + 0.162*x22 + 0.126*x23;

supplyl .. x11 + x12 + x13 =1= 350;
supply2 .. x21 + x22 + x23 =1= 600;

demandl .. x11 + x21 =g= 325;
demand2 .. x12 + x22 =g= 300;
demand3 .. x13 + x23 =g= 275;

model Ptransport /all/;
solve Ptransport using lp minimizing zp;



Example 2: primal &dual LPs
Dual

variables zd, ul, u2, vil, v2, v3;

negative variables ul, u2;

positive variables v1, v2, v3;

equation of, dl1, d2, d3, d4, d5, d6;

of .. zd =e= 350*ul + 600*u2 + 325*v1 + 300*Vv2 +

275%v3;

dl .. ul + vl =1= 0.225;
d2 .. ul + v2 =1= 0.153;
d3 .. ul + v3 =1= 0.162;
d4 .. u2 + vl =1= 0.225;
d5 .. u2 + v2 =1= 0.162;
d6 u2 + v3 =1= 0.126;

model Dtransport /all/;
solve Dtransport using lp maximizing zd;



Example 2:
Primal &
dual &
strong
duality
equality

variable
positive
negative
positive
equation

Z;

variable
variable
variable
of, sde;

S
S
S

equations supplyl,
equations dl1, d2, d3, d4, d5, d6;
of .. z =e= x11;
sde .. 0.225*x11 + 0.153*x12 + 0.162*x13 +

0.225*x21 + 0.162*x22 + 0.126*x23

=e= 350*ul + 600*u2 + 325*v1l + 300*v2 + 275*v3;

supplyl ..
supply2 ..
demandl ..
demand2 ..
demand3 ..

dl .. ul
d2 .. ul
d3 .. ul
d4 .. u2
d5 .. u2
dé u2

x11 +
xX21 +
x11

+ + + + +
W
1l
1l

+ v3 =1=

model PDtransport
solve PDtransport

x1
X2
X2
X2
X2

9.

%)
%)
%)
%)

%)
/

u

x11, x12, x13, x21, x22, Xx23;
ul, uz2;
vl, v2, v3;

supply2, demandl, demand2, demand3;

2 + x13 =1= 350;
2 + x23 =1= 600;
1 =g= 325;

2 =g= 300;

3 =g= 275;

225;

.153;

.162;

.225;

.162;

.126;

all/;

sing lp maximizing z;
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Karush-Kuhn-Tucker (KKT) Conditions

aaaaaaaaaaaaa



Reference

S. Gabriel, A. J. Conejo, B. Hobbs, D. Fuller, C. Ruiz, “Complementarity
Modeling in Energy Markets” International Series in Operations
Research & Management Science, Springer, New York. 2012:

http://link.springer.com/book/10.1007/978-1-4419-6123-5/page/1

Januar y 7, 2015 A. J. Conejo


http://link.springer.com/book/10.1007/978-1-4419-6123-5/page/1

Karush-Kuhn-Tucker (KKT) Conditions

The Karush-Kuhn-Tucker (KKT) conditions are condi-
tions that the optimal solutions of a broad range of
optimization problems should satisty.

For some problems the KK'T conditions cannot be mean-
ingfully formulated, and thus they cannot character-
ize optimal solutions for these problems.
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Karush-Kuhn-Tucker (KKT) Conditions

Additionally, KKT conditions can be necessary but not
sufficient conditions, i.e., solutions meeting them are
not necessarily optimal but optimal solutions need
to meet them.

Also, KKT conditions are first-order conditions, i.e.,
conditions that are formulated using first derivative
vectors and matrices (gradients and Jacobians).
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Karush-Kuhn-Tucker (KKT) Conditions

Consider

Minimize, f(z)

S. t.
h(x) =0
g(z) <0



Karush-Kuhn-Tucker (KKT) Conditions

To formulate the KK'T conditions it is convenient to de-
fine the Lagrangian function:

L= f(z) + A\ h(z) +p g(x)

where f(z), h(z) and g(x) are continuously differentiable
in the feasible region (x € {x|h(x) =0,g(x) < 0}).
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Karush-Kuhn-Tucker (KKT) Conditions
The KKT conditions are

V.f(z) + XV, h(z) + ptVag(z) =0
h(x) =0

g(z) <0

pg(x) =0

p =0

p—
e

/—\/“\/—-\/’:/“\
—

<R3
~— — ~— ~—

p—
@



Karush-Kuhn-Tucker (KKT) Conditions

A € IR™E and p € IR™ are respectively, the equality
and inequality Lagrange multiplier vectors, and

V., denotes the gradient with respect to .



Karush-Kuhn-Tucker (KKT) Conditions

Constraint (1.a) states that the gradient of the Lagrangian
at an optimal solution x should be zero.

Constraint (1.b) states the equality constraints.
Constraint (1.c) enforces the inequality constraints.

Constraint (1.d) states that inner product of the mul-
tiplier vector of the inequality constraints and the
inequality constraint vector is zero.

Constraint (1.e) states that the multiplier vector of the
inequality constraints is nonnegative.
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Karush-Kuhn-Tucker (KKT) Conditions

Constraints (1.c)-(1.e) are known as complementarity con-
ditions and are equivalently written as

0<pulg(zx)<0

where | indicates complementarity, i.e., u! g(x) = 0.
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Karush-Kuhn-Tucker (KKT) Conditions

In short, under convexity conditions, for a solution x of
the problem to be a minimizer needs to meet KK'T

conditions.

Also, it can be shown that vector A is both the sensitiv-
ity vector (as in the linear case) and the Lagrange

multiplier vector.



KKT: example equality constraints



KKT: example equality constraints

Minimize, ,, — ms1 + [a1 + bi(f1 + s1)]
S. 1.

—T+y—=0(s1+s2+ fi+ f2) =0



KKT: example equality constraints

The KK'T conditions are

—81—)\:0

_7T_

-0 — A3 =0

_’]T_

-y —=B(si+s2+ fi+ f2) =0



KKT: example equality constraints

A is the multiplier associated with the equality con-
straint.

Equations (1a), (1b) and (1c) are obtained by taking
derivatives of the Lagrangian function with respect
to m, s1 and A, respectively.



KKT: example no constraints



KKT: example no constraints

Minimizes,
— |y = B(s1+s2+ fi + fo)l s1+ a1 +01(f1 + s1)



KKT: example no constraints

The KKT condition is obtained by differentiating the ob-
jective function with respect to s; and setting this equal
to zero,

581—’)/+,8(81—|—82—|—f1—|—f2)—|—b1:O



KKT: example no constraints

Note that the above two sets of KKT conditions are
equivalent, as they correspond to two formulations of
the same problem.



KKT: example equality constraints

The KK'T conditions with numerical values are

—81—)\20
— 71— 0.00b0A+40 =0
— 7 — 0.005s81 + 88 =0

whose solution is s; = 4800 MWh, 7 = 64 $/MWh and
A = —4800 MWh (same as previously).



KKT: example equality & inequality constraints



KKT: example equality & inequality constraints

Minimize, ;, — 781+ {al + b1(f1 + 51)}
S. t.

—m+y—B(s1+s2+ fi+ f2) =0
s1—s1 <0



KKT: example equality & inequality constraints

The Lagrangian function is

L(m,s1, A\ 1) = —7s1 + |ar +bi(fi + s1)]
+A[ =7 +y = B(s1+s2+ fi + fo)] + plsy — s)



KKT: example equality & inequality constraints

The KK'T conditions are

—nm+b— A8+ p=0 (1a
—81—)\:0 (1b
—nm+yv—B(s1+s2+ fi+ fo) =0 lc

)
)
(1c)
s1 < sp (1d)
p(s1— 1) =0 (le)
>0 (1f)



KKT: example equality & inequality constraints

A is the multiplier associated with the equality con-
straint, and

1t is the multiplier associated with the inequality con-
straint.



KKT: example equality & inequality constraints

Constraints (1a), (1b), (1c) and (1d) are obtained by
differentiating the Lagrangian function with respect
to sy, m, A and u, respectively.

Constraint (1e) enforces that the product of the inequal-
ity constraint and its multiplier is zero.

Constraint (1f) enforces the nonnegativity of multiplier
1.



KKT: example equality & inequality constraints

Numerically

40 — 0.005\ + 1 = 0

— 51 —A=0

— 74100 — 0.005(s1 + 2400) = 0
s1 < s
p(s1—sp1) =0
p =0



KKT: example equality & inequality constraints

Atfter some simplifications:

(4800 — 81)(81 — SIlnaX) =0
s1 < 4800

max

S1 < Sy
If s1*** > 4800 MWh then s; = 4800 MWh.
If s7% < 4800 MWh then s; = s7".



Constraint Qualifications



Constraint Qualifications

For the KKT conditions to be meaningful, the con-
straints of the considered problem need to meet cer-
tain qualifications at each optimal solution.

In other words, solutions to KK'T' conditions correspond
to the optimal solutions of those problems whose
constraints meet constraint qualifications at the opti-
mal solutions, but not for all optimization problems.

Fortunately, many problems of practical interest have
constraint qualifications that hold at the correspond-
ing optimal solutions.
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Constraint Qualifications

If the constraints of the problem under consideration
meet a constraint qualification, the KKT' conditions
are necessary conditions.

Being necessary means that at any optimal solution they
must hold necessarily.

Being sufficient means that a solution to these condi-
tions is a solution of the original problem.

Januar y 7, 2015 A. J. Conejo
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Constraint Qualifications

Several constraint qualification criteria are available. In
particular, we state below the linear independence con-
straint qualification (LICQ), a common and simple one.



Constraint Qualifications

If the gradients of the equality constraints A(x) = 0
and the binding inequality constraints g(x) < 0 are
linearly independent at a given feasible solution z.

Then this solution is said to be regular, KK'T condi-
tions can be meaningfully written for x, and thus,
the constraints meet the qualification criterion at =x.

Note that linearity in h(z) and g(x) implies that the
constraint qualification criterion is met.
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Constraint Qualifications: example

Minimize, ;, — w81+ [aq + b1(f1+ 51)}

S. t.

—

v — B(s1

s1—s7 <0

59

h

f2) =10

(1a)

(1c)



Constraint Qualifications: example

The gradient vectors of constraints (1b) and (lc) are,
respectively,

-1 0
Vh(msu) — —,8 ) Vg(ﬂ,sl) — 1

Since these vector are always linearly independent, the
constraint qualification is met at any solution.



Constraint Qualifications: example

Consider the following optimization problem

Minimize,, —y
S. 1.

T2+ y2 =1

y+ 2 —1<0



Constraint Qualifications: example

A optimal solution for the problem above is (z,y) =
(0,1). The gradient vectors of constraints (1b) and (1c)
evaluated at the optimal solution are, respectively,

21 | 0 o1 | 0
Vh(fﬁay)__Qy__ 9 | Vg(ﬂ?,y)_ 1___1_




Constraint Qualifications: example

Note that the above gradient vectors are linearly depen-
dent.

Therefore the constraints do not meet the LICQ) crite-
rion at the optimal solution and the KK'T conditions
are not necessary for optimal solutions to this prob-
lem.



Constraint Qualifications: example

KKT conditions are

2 x + 2pux =0
—14+2\y+p=0
:UQ—I—yQ:l
wly+a* —1) =0
>0

y < —2°+ 1

where A and p are, respectively, the Lagrange multipliers
for constraints (1b) and (1c).



Constraint Qualifications: example

At the optimal solution, (z,y) = (0,1), the system of
equations above becomes

— 142\ +u=20
pu=>0

but since A is unconstrained and p nonnegative there are
an infinite number of solutions.



Constraint Qualifications: example

Note that (x,y) = (0, —1) satisfies the KKT conditions
despite not being an optimal solution. Thus, the KK'T
conditions are not meaningful.



Sufficiency conditions



Sufficiency conditions

We state below sufficiency conditions. Solving these
conditions is equivalent to solving the problem under
consideration.



Sufficiency conditions

A solution x of the general problem meeting KK'T con-
ditions, where f(x) is a continuously differentiable
convex function and h(z) = 0 and g(x) < 0 con-
stitute a convex set, is guaranteed to be an optimal
solution.

Additionally, the sufficiency condition below guarantees
x to be an optimal solution.



Sufficiency conditions

Vaf(x) 4+ M V2ih(z) + p' Vig(z) > 0 on the subspace
{y: Vih(z)y =0;V,gi(x)y =0,Vi € T}, T =j:gi(x) =0, >0



Sufficiency conditions

Note that
{y : Voh(z)y=0;V,9,(x)y=0,Vy€ T}, J =7:9x)=0u; >0

1s the tangent hyperplane at x, and that

A2 h(z Z A2 (2



Sufficiency conditions

In words, the condition above implies that the Hessian
of the Lagrangian at x should be positive definite on
the tangent hyperplane at .

Observe that sufficiency conditions are second order con-
ditions as they rely on second derivative matrices
(Hessians).
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Sufficiency conditions: example

Minimize, ;, — 781+ {al + b1(f1 + 51)}
S. t.

—m+y—B(s1+s2+ fi+ f2) =0
s1—s1 <0



Sufficiency conditions: example

flx) = —ms1+ a1+ bi(fi + s1)
h(x) — —7T—|—’)/—/6(51‘|‘32‘|‘f1"|_f2)

max

g(x) = s1— s
r = [m 51|t
The gradient vectors and Hessian matrices are

v.r-|

—1
_7T—|—b1:|’ va:h:|:_6:|a v:cg:|:



Sufficiency conditions: example

,, [0 —1 —_—
vxf_[—1 0]’ vwh_{o 0}’



Sufficiency conditions: example

The Hessian of the Lagrangian is

Vil + XN Vih+ ' Vig = { _01 _01 }



Sufficiency conditions: example

On the other hand, considering that the inequality con-
straint is not binding, solutions y on the tangent hyper-
plane meet y! V,h = 0, thus

U1 yﬂ{:;}zo (1)
and

Y1 = —Byo (2)



Sufficiency conditions: example

Considering the Hessian of the Lagrangian and solutions
belonging to the tangent hyperplane allows showing that
this Hessian is definite positive on that subspace, i.e.,

—Byz Y2 | {_01 _01] {_5292}:25y§>07 Yy > 0



Sufficiency conditions: example

Thus, this problem meets the second order sufficiency
conditions for all solutions.

Using the numerical data, the gradient vectors are

_| —s _| 1 _
Ve = [—w+40} Ve = {—0.005} V8 =



Sufficiency conditions: example

The tangent hyperplane is characterized by
Yy = —0.005y2



Sufficiency conditions: example

Finally, considering the Hessian of the Lagrangian and
solutions belonging to the tangent hyperplane, we obtain

0 —1° {—0.005y2

| —0.005y2 ys | [_1 0 " }:o.myg

which is always positive for all solutions y



Sufficiency conditions: example

This shows that the Hessian of the Lagrangian is positive
definite and that second order sufficiency conditions are
met for all solutions of the problem.



Mixed Linear Complementarity Problem, MLCP



Mixed Linear Complementarity Problem, MLCP

A Mixed Linear Complementarity Problem, MLCP, is
a system of equalities and inequalities of a certain
form that relates to KK'T conditions.

More general definitions can be established but they are
not used in this chapter.

The general form of an MLCP is stated below.
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Mixed Linear Complementarity Problem, MLCP

Find z; € IR" and 29 € IR™ such that

p—t
93

g1+ Mi121 + Mioze > 0 (
qo + Mo121 + Maogzo =0 (
2 >0 (1c
21 (q1 + Myiz1 + Myszs) = 0 (

—
o
S— N N NS



Mixed Linear Complementarity Problem, MLCP

where ¢; € IR", ¢ € IR"™,
M1 € Rnxn, Moo € Rmxm,
Mqo € RnXm’ and My € R™"",

Note also that z9 i1s unconstrained.



Mixed Linear Complementarity Problem, MLCP

Constraints (1a), (1c) & (1d) allow formulating the com-
plementarity conditions

0<2z1lg+ Miz1 + Mygze 20
while equations (1b) are other equality constraints.

Since MLCPs are related to KK'T conditions, these con-
ditions are relevant in studying complementarity prob-
lems.



Mixed Linear Complementarity Problem, MLCP
example

Minimize, ;, — 781+ {al + b1(f1 + 51)}
S. t.

—m+y—B(s1+s2+ fi+ f2) =0
s1—s1 <0



Mixed Linear Complementarity Problem, MLCP
example

These KK'T conditions constitute an MLCP where

o i by i
2’1—[#],2’2— T 791:[3?%},%— 0 ;
A v —B(s2+ fi+ f2) |

0 —1 =B 1

Mi=]0], Mia=|-100], Mp=| -1 0 =11, Myy=1|0

-8 -1 0 _ 0




Mixed Linear Complementarity Problem, MLCP
example

Note that n =1 and m = 3,

z1 € RY, 2, € R°,

¢ € R, ¢ € R,

My € RY My, € R, My, € RY My, € IR



KKT:
MLCP example 1

January 7, 2015

positive variables x1, x2, x3;
positive variables ml, m2;
variable 1

equations

e, i1, i2, rl1, r2, r3;

e .. 61 + x2 + 2*x3 =e= 50;

il .. 400 - 20*x1 - 14*x2 - x3 =g= 0;
i2 .. -60 + x1 + 2*x2 + x3 =g= 0;
ri .. 10 + 20*ml - m2 - 6*1 =e= 0;
r2z .. 4 + 14*ml1 - 2*m2 - 1l =e= 0;
r3 24 + ml - m2 - 2*1 =e= 0;
model MCPsimple

/

e.l,

il.ml, 1i2.m2,

rl.x1, r2.x2, r3.x3

/3

solve MCPsimple using mcp;
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positive variables x11, x12, x13, x21, x22, x23;
<KT positive variables ul, u2, vl, v2, v3;
equations supplyl, supply2, demandl, demand2,

V|LCP examp‘e 2 demand, ratl, rat2, rat3, rat4, rat5, raté6;

supplyl .. 350 =g= x11 + x12 + x13;
supply2 .. 600 =g= x21 + Xx22 + x23;
demandl .. x11 + x21 =g= 325;
demand2 .. x12 + x22 =g= 300;
demand3 .. x13 + x23 =g= 275;
ratl .. ul

+ 0.225 =g= v1;
rat2 .. ul + 0.153 =g= v2;
rat3 .. ul + 0.162 =g= v3;
rat4 .. u2 + 0.225 =g= vi,;
ratb .. u2 + 0.162 =g= v2;

raté .. u2 + 0.126 =g= v3;

model MCPtransport

/

supplyl.ul, supply2.u2,

demandl.vl, demand2.v2, demand3.v3,

ratl.x11, rat2.x12, rat3.x13, rat4.x21, rat5.x22,
rat6.x23

/5

solve MCPtransport using mcp;
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What

1. Equilibrium Problems, EP.
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Reference

S. Gabriel, A. J. Conejo, B. Hobbs, D. Fuller, C. Ruiz, “Complementarity
Modeling in Energy Markets” International Series in Operations
Research & Management Science, Springer, New York. 2012:

http://link.springer.com/book/10.1007/978-1-4419-6123-5/page/1
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Equilibria

An equilibrium problem is a mathematical entity consti-
tuted by the joint consideration of the KKT condi-
tions of several interrelated optimization problems.

More general definitions of equilibrium problems are
also possible but they are not considered in this pre-
sentation.
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Equilibria

Consider the ¢ = 1, ..., n problems below

Minimize,: f'(z',...,2")

S. t.
Ri(zh, ..., 2") =0
gi(ac‘l,...?a:”) <0

Januar y 7, 2015



Equilibria
The vector ¢ € IR" includes the set of optimization

variables of problem <.

Setting ny = >, n’, the objective functions and the
constraints of problem ¢ are defined as follows,

' :R" — IR,
hi i IR"™ — IR™# and
g i IR" — IR™.
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Equilibria

It is important to note that although the decision vari-
ables of problem ¢ are just those in the vector z', the
objective function and the constraints of problem 1,

fi(ajl, 2",
hi(xt, ..., 2") =0 and
gi(;r:l,...,a:”) <0,

depend on the decision variables of all problems, i =
L,...,n.
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Equilibria

This fact makes the n problems considered interrelated,
which results in a well-posed equilibrium problem.

Specifically, this problem is an instance of the General-

ized Nash Equilibrium Problem (GNEP), first pro-
posed by Debreu in 1952.
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Equilibria

The GNEP is a generalization of the well known Nash
Equilibrium Problem (NEP).

In an GNEP each player’s set of constraints depends
on the rival players’ decisions; that is, the actions of
other players are not considered fixed for establishing
the decisions ot each player.

The analysis of the properties of the GNEP is out of the
scope of this presentation.

Januar y 7, 2015 A. J. Conejo



Equilibria

Equilibrium Problem (EP)

Optimization Optimization
problem 1 problem n




Equilibria

N

I'he corresponding equilibrium problem is defined by jointly
solving or considering the KK'T conditions of the n prob-
lems above, 1.e.,

Vi f'(zt, ..., 2") + )\iTinhi(xl, coxt)+
uiTingi(xl, L,x") =0, 1=1,...,n
i(zh,...,2")=0, i=1,...,n

0< 'l —gla',....,2")>0, i=1,...,n

Januar y 7, 2015 A. J. Conejo
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Equilibria

A e R and = R are the Lagrangian multiplier
vectors corresponding to the equality and inequality
constraints of problem ¢,

hi(zt,...,2") =0 and

g'(z', ..., 2") <0, respectively.

Januar y 7, 2015 A. J. Conejo
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Equilibria

Equilibrium Problem (EP)

KKT KK'T

conditions of | ® e e | conditions of
problem 1 problem n
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Equilibria: example with no constraints

Problem of producer 1:

Minimizes,

— |y = B(s1+s2+ fi+ f2)] s1 + a1 +bi(f1 + s1)



Equilibria: example with no constraints

The single optimality condition for the problem of the
first producer, and the single optimality condition of the
problem of producer 2 (similar to that of producer 1),
stated jointly, constitute an equilibrium problem, i.e.,

—Bsi+(y—=B(s1+s2+ fi+ f2)) — b1 =0
—Bsa+(y—B(s1+s2+ fi+ f2)) —ba =0
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Equilibria: example with no constraints

The unknowns of the above linear system of equations
are s; and s9, and a solution is

:7—|‘52—251—5(f1+f2)

S1 3,6
Y+ b =26y = B(f1 + fo)
S9 — 36

which considering the price equation leads to the price

:’Y+bl+bz—5(f1—|—f2)
3

T



Equilibria: example with no constraints

Using numerical values, the system of equations becomes

— 0.01s; — 0.005s9 + 58 =0
— 0.005s51 — 0.01s9 +48 =0




Equilibria: example with no constraints

The solution is s; = 4533.3 MWh, sy = 2533.3 MWh.

We can also compute the equilibrium price resulting in

T = 62.66 $/MWh.

Note that the highest production quantity corresponds
to the cheapest producer (producer 1).



Equilibria
Example: only equality constraints

Minimize, 5, — ms1 + [a1 + bi(fi + 51)]
S. t.
—mT+y—=pB(s1+s2+ fi+ f2) =0



Equilibria. Example: only equality constraints

The KKT conditions for the problem of the first pro-
ducer (including one equality constraint), and

the KK'T conditions of the problem of the second pro-
ducer (including also an equality constraint), consid-
ered jointly,

constitute an equilibrium problem, which characterize
the equilibrium of the spot market, i.e.,



Equilibria. Example: only equality constraints

—m+y—0B(s1+s2+ fit+ f2) =0 (1a)
— T+ b —MB =0 (1b)
— 51— A =0 (1c)
—7m+by— B =0 (1d)
— S9 — A =0 (le)



Equilibria
Example: only equality constraints

Note that equation (la) appears in the optimality con-
ditions of the problems of both producer 1 and pro-
ducer 2. However, it is not duplicated in the system
of equations above.

Additionally, note that this system of equations includes
no inequalities as the original problem includes no
inequalities.



Equilibria. Example: only equality constraints

Considering the numerical values,

— T — 0.005(81 + 82) + 98 =0
— 7 — 0.006A; +40 =0

—81—/\120
— 1 — 0.005X 450 =0
—82—)\220

Note that the solution is the one previously obtained
and that A\{ = sy = 4533.3 MWh and \y = s9 = 2533.3
MWh.



Equilibria
Example: equality and inequality constraints

Minimize, s, — w81+ {Gq + b1(f1 + 31)}

S. t.
—m+y—B(s1+s2+ fi+ f2) =0
Sl—SrlnaXSO



Equilibria
Example: equality and inequality constraints

The KKT conditions for the problem of the first pro-
ducer with capacity constraints, and

the KK'T conditions of the problem of the second pro-
ducer also with capacity constraints, considered jointly,

constitute an equilibrium problem that characterizes the
equilibrium of the spot market, i.e.,



Equilibria
Example: equality and inequality constraints

—rdy =Bt st it ) =0  (la)
—7m+b—ANB+pu =0 (1b)
—s1—AN =0 (1c)
0 < ppl(sy—s1™) <0 (1d)
— 7+ by — X+ g =0 (le)
—So— A =10 (1f)
0 < pa L (59 — 53) < 0 (1)



Equilibria
Example: equality and inequality constraints

Note that the KKT conditions of producers 1 and 2

have their own multipliers Ay and @1, and A9 and puo,
respectively:.

Multipliers A\; and Ay are associated with equality con-
straints (of producers 1 and 2, respectively), while

multipliers py and py with inequality constraints (of
producers 1 and 2, respectively).



Equilibria
Example: equality and inequality constraints

Equation (1.a) appears in the optimality conditions of
the problems of both producer 1 and producer 2.

However, it is not duplicated in the system above.



Equilibria
Example: equality and inequality constraints

Using the numerical values,

7 — 0.005(s; + 82) + 98 = 0
7 — 0.005)\; + 11y +40 = 0
—Ss1—A1 =0

0 < ppl(sy— ™) <0

— 7 — 0.005M\ + pag + 50 = 0
— SS9 — A =10

0 < pold (89— 85*) <0



Equilibria
Example: equality and inequality constraints

The reader can easily check that if si"** > 4533.3 MWh
and sy > 2533.3 MWh the solution of (1) above is
equal to the one already provided.



Equilibria
Example: equality and inequality constraints

The KKT conditions above, which include equality and
inequality constraints, constitute an MLCP where




Equilibria
Example: equality and inequality constraints

1 0 0 0 —1 -8 0
0 1 0 0 -1 0 -8
My=100|, Mpw=| -1 0 0 —1 0
0 0 0 -1 0 0 —1
00 -3 -8 -1 0 0




Equilibria with LPs

We analyze below a particular instance ot equlibria.

Each of the problems is assumed to be linear and addi-
tionally we consider that n' = 1,Vi (i.e., each opti-
mization problem involves a single optimization vari-

able).
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Equilibria with LPs

These assumptions render the 1 = 1,

lems below
L T
Minimize,, c¢" x
S. t.
Az =01

Dz < ¢

Januar y 7, 2015 A. J. Conejo
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Equilibria with LPs

v=(z1,...,2,..., 2" x c R™! ¢ e R™L
Az’ c IRmExn,

b € R

D' € R™*" and

el ¢ R™*!

Note that the only optimization variable of linear prob-
lem 7 is the 2-th component of vector z, i.e., x;.

Januar y 7, 2015 A. J. Conejo
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Equilibria with LPs

For the sake of clarity, we consider the particular case
in which n =2, mg =1 and my = 1.

Thus, x = ($19$2)T7 ¢ = (Cijcg)_T, Al = (afi,aé), b =

(b"), D' = (di,d}) and €' = ().

Januar y 7, 2015 A. J. Conejo
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Equilibria with LPs

The corresponding equilibrium problem is defined by jointly
considering the KK'T' conditions of the above problems,
1.e.,

c; + Majp +pld; =0

a1 + asry = bt
0 < /ulj_diatl -+ d%xg — el <0
5 4+ Na; + pdy = 0
aix1 + asry = b (1e

(

0 < p®Ldiz +dsxze —e* <0

e —_ =
o o T
R N S O A
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Equilibria with LPs

A € IR and ¢* € IR are the Lagrangian multiplier vec-
tors.

(1a) and (1d) result from differentiating the Lagrangian
of each problem with respect to x; and x9, respec-
tively.

(1b) and (le) are the equality constraints contained in
the original problems.

(1c) and (1f) are the complementarity constraints.

Januar y 7, 2015 A. J. Conejo
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Equilibria with LPs

The optimality conditions above constitute a MLCP where

L1 I —bl |
B ul B To B 61 _b2
£l — uz y Ry = Al y Q]. T 62 y qQ T C%
R G




Equilibria with LPs

M11:{

0 0
0 0

o O O

|

o O O

S8
N RO

)




Equilibria with LPs

21 € R, 29 e RY,

ql€:

R2><17 s =

I{4X1,

]\411 c IRQXQ, MlQ c R2X4,
My € R and My € IR¥.
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What

1. Mathematical program with equilibrium constraints,

MPEC.
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MPEC

A mathematical program with equilibrium constraints
(MPEC) is an optimization problem involving con-
straints that represent equilibrium conditions.

For instance, KKT conditions for one or several inter-
related optimization problems modeling the equilib-
rium in the electricity market.

In other words, an MPEC is an optimization problem
whose constraints include other interrelated optimiza-
tion or complementarity problems.
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MPEC

The formulation of a particular case of an MPEC is pro-
vided below,
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I\/l P EC Minimize{w}U{xl 2L N2 ut 2} f(il?, xla $29 )\17 )\23 ula MQ)

h(.cvzc 2 ANt ) =0
gz, zt, %, NN M)SO
z?)

Mmlmlzex iz, z

hl (, .:1:‘ 1) =0 (A1)
(2,21, 2%) <0 (1)
{ Mlmmlzewz f2(x, xt, 2%)

0 (A?)
0
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MPEC

Observe the nested structure of the problem above, i.e.,
an optimization problem constrained by a set of two
optimization problems.

Moreover, the Figure below illustrates the structure of
an MPEC considering n optimization problems as
constraints.
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MPEC

Mathematical Program with Equilibrium Constraints

(MPEC)

Objective function (minimize or maximize)

subject to:

Constraints

Constraining optimization problem 1

Constraining optimization problem n
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MPEC

Vector o € IR™ includes the set of optimization vari-
ables of the upper-level problem,

vector ¢ € IR™ includes the set of optimization vari-
ables of constraining problem ¢, and

A e IR and = R™" are the dual variable vectors of
problem ¢ associated with the equality and inequality
constraints, respectively (indicated in parenthesis).
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MPEC

Calling n, = Z?:o n', and ng = n, + Zgzl(m% +mb),
the objective tunction and the constraints of the up-
per level problem are

f:IR"* - IR,
h:IR" — IR™", and
g:IR"¢ — IR™;
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MPEC

The objective function and the constraints of constrain-
ing problem 7 are

fi.R"™ — R,
hi:IR"™ — R™*, and

g : R"™ — IR
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MPEC

Although the optimization variables of constraining prob-
lem ¢ are just those in vector z*, the objective func-
tion and the constraints of constraining problem ¢,
depend on the optimization variables of all prob-
lems (the upper-level one and the constraining ones),
r, 2,1 =1,2.

The lower-level problems represent a Generalized Nash
Equilibria (GNE).

Januar y 7, 2015 A. J. Conejo
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MPEC

The upper-level problem depends on all primal opti-
mization variables, z,z',7 = 1,2, as well as on the

dual variables of the lower-level problems \', ', =
1,2.

This fact makes the upper level problems and the two

constraining problems interrelated, which results in
a well-posed MPEC.

Januar y 7, 2015 A. J. Conejo
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MPEC

The optimization variables are arranged in two subsets
to differentiate:

(a) those specifically pertaining to the upper-level prob-
lem, {x}, and

(b) those influencing the upper-level problem though the
constraining problems, {z', z% A\, A, u!, ).

Januar y 7, 2015 A. J. Conejo
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MPEC

It the lower-level optimization problems constraining the
upper level problem are convex, they can be replaced by
their corresponding KK'T' conditions. Then, the problem

becomes

Januar y 7, 2015 A. J. Conejo
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MPEC

January 7, 2015

L 1 .2 y1 42 ,1 2
Minimize, ;1,2 3 02,02 f(a, 2%, A, A% 00, 1)
S. 1.

h(z,z', o®, XN ph, 1?) =0

g(x, 2t 2 AL A2, it ) <0,

Vo fH(z, zt, 2?) + AlTvxlhl(az, rh 2*)+
i Vg (,2',2%) =0,

Ve fo(z, 2t 2%) + /\QTvxth(m, zt, 2?)+

12V 2P (x, at, 2?) = 0,
h(z,zt, z*) =0,
h(x,x', 2?) =0,

0 < plg'(x, a2, z*) <0,
0 < p?lg®(x,a',2*) <0

A. J. Conejo
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MPEC

January 7, 2015

Mathematical Program with Equilibrium Constraints

(MPEC)

Objective function (minimize or maximize)

subject to:

Constraints

KKT conditions of constraining problem 1

KKT conditions of constraining problem n

A. J. Conejo 17



MPEC

This problem is a typical MPEC.

It is relevant to note that its feasibility region is not a
convex set.

Moreover, the complementarity constraints do not meet
standard constraint qualifications, like LICQ), at any
feasible point.

Januar y 7, 2015 A. J. Conejo
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MPEC

Finally, note that if an MPEC includes a single, lower-
level constraining problem, it is called an MPCC,
mathematical program with complementarity (KKT)
constraints.

Januar y 7, 2015 A. J. Conejo
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MPEC example: only equality constraints

We consider a producer ¢ with the linear production cost
¢i = a; + bi(s; + fi)
¢; 1s the cost function,

a; 1S the no-production fixed cost,

b; 1s the linear production cost, and

f; and s; are the quantities sold by the producer in the
futures and the spot markets, respectively.



MPEC example: only equality constraints

a; and b; are constants,

fi and s; are decisions variables (what the producer must

decide), and

¢; 1s a function of the decision variables.

Januar y 7, 2015 A. J. Conejo
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MPEC example: only equality constraints

The futures and spot markets (two trading floors) are
assumed to be cleared sequentially,

first the futures market and then

the spot market.



MPEC example: only equality constraints

We consider two producers (i = 1,2) and a single price
for both the spot and the futures markets, which depends
linearly on the total production, i.e.,

m=7—PB(s1+s2+ f1 + f2)

where 7 is the actual price, v > 0 is the no-demand price
and 0 > 0 is the price-demand slope.



MPEC example: only equality constraints

The above implies no arbitrage (no possibility of advan-
tageous trading) between the spot and the futures
market.

~v and 3 are constants,
s1, S9, f1 and fy are decisions variables, and

the price 7 is a function of the decision variables.



MPEC example: only equality constraints

We consider that producer 1 maximizes its total profit
from selling in the futures market,

assuming equilibrium in the spot market, i.e.,

assuming that the equilibrium conditions in the spot
market are satisfied.



MPEC example: only equality constraints

Thus, its corresponding optimization problem is



MPEC example: only equality constraints

Minimize{ﬂjfl}u{slm} — 7T(S1 + f1) + a1 + bl(sl + fl)
s. 1.
Minimizes, — wsy 4+ a1 +bi(s1 + f1)
s. t.
T = — B(s1+ 52+ f1+ f2),

Minimizes, — mss + as + ba(s2 + f2)
S. t.

T=~—08(s1+ s+ f1+ f2)

(1a)



MPEC example: only equality constraints

The objective function (1a) represents the negative profit
of producer 1 from selling s; in the spot and f; in
the futures markets.

Note that s; and f; may depend on the productions of
other producers.



MPEC example: only equality constraints

This objective function is constrained by two optimiza-
tion problems, (1b) and (1c), which when solved
jointly represent the equilibrium in the spot market.

These two interrelated, lower-level problems represent
the profit maximization of producers 1 and 2, re-
spectively.



MPEC example: only equality constraints

The optimization variables of the upper-level problem
are separated into two subsets, namely {7, f;} and

{81,82}.

The first subset includes the optimization variables di-
rectly related to the upper-level problem.

The second subset includes optimization variables re-
lated to the upper-level problem through the sub-
problems.



MPEC example: only equality constraints

This problem can also be expressed as



MPEC example: only equality constraints

Minimizer r, s, —m(s1+ fi)+a1+bi(si1+ f1) (1la)

S. t.
. v+ b —26135— B(fi+ f2) (1h)
- Y+ b1+ b2 — B(f1+ f2) (1c)

3
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MPEC example: only equality constraints

The constraining problems have been replaced by their
joint solution, represented by equality constraints (1b)

and (1c).



MPEC example: only equality constraints

Incorporating these equality constraints into the objec-
tive function, the problems becomes unconstrained, i.e.,

Minimize
Y+ b+ b= B(f1+ f2) (7+b2—251—5(f1—|-f2)
3 30
ey TR BB )

;



MPEC example: only equality constraints

The problem above is solved by differentiating its objec-
tive function with respect to f; and setting the resulting
expression equal to 0 (optimality condition), i.e.,

V(=14 2tp1) + b1(2 — 43)1) + ba(—1 + 2t)
+ Bf1(4+ 1) + Bfa(1 —2¢) =0

where
Of

"o,



MPEC example: only equality constraints

Parameter 1); above represents the reaction of producer 1
in the futures market to the action of producer 2, also in
the futures market, and is called the reaction parameter.



MPEC example: only equality constraints

The optimal value for f; can be obtained solving for fi,
namely

= Bfo(—=14 21p1) + v(1 — 2a1) + b1 (=2 + 49p1) + bo(1 — 29)1)

B(4+ 1)



MPEC example: only equality constraints

Note that this solution constitutes the optimal solution
of the MPEC.



MPEC example: only equality constraints

Considering the numerical data

Minimize, r, s, — m(s1+ f1)+ 30,000 + 40(s; + f1)

S. t.
. _ T0—0005(fi + f>)
b 0.015
190 — 0.005(f1 + fo)
7‘(‘ p—

3



MPEC example: only equality constraints

whose solution (assuming fo = 200MWh) is

B 13,800 — 26, 000,
B 4+ 1n

h



MPEC example: only equality constraints

Results for different values of the reaction parameter 1,
are provided in the table below.



MPEC example: only equality constraints

o Price, #  Futures production, f; Spot production, s; Profit
1

($/MWh) (MWh) (MWh) (9)
+0.1 58.44 2731.7 3689.4 88,452
0.0 57.25 3450.0 3450.0 89,025

—0.1 55.99 4205.1 3198.3 88,391




MPEC example: equality and inequality constraints

We consider the same two producers but including pro-
duction capacity limits. The resulting MPEC for pro-
ducer 1 is



MPEC example: equality and inequality constraints

Minimize{mfl}u{slj@} — 7’(‘(81 + f1) + aj + 51(51 + fl)
S. t.
Minimizes,, — wsy+ a1 + bi(s1 + f1)
S. t.
—m+7 = B(s1+s2+ fi+ fo) =0

Minimize;,, — wsg + as + ba(s2 + f2)

S. t.
—1+v—=0B(s1+s2+ fi+ f2) =0
S9 — S]énax S 0



MPEC example: equality and inequality constraints

Observe that the problem above is constrained by two in-
terrelated optimization problems that jointly solved rep-
resent the equilibrium in the spot market.



MPEC example: equality and inequality constraints

Using the KK'T conditions of the two lower-level prob-
lems, the MPEC above can also be written as



MPEC example: equality and inequality constraints
Minimizer £, s;.so A doe — T(S1+ f1) + a1+ bi(s1 + f1)
S. 1.

—7mT4+b—MB+u =0

—s51—A =0
—T+y—=B(s1+s2+ fi+ fo) =0
0 < prl(sy —s7%) <0

— T+ by — A + 2 =0

— S9 — Ao =0
—T+y—=B(s1 +s2+ fi+ fo) =0
0 < pol(se —s55%) <0



MPEC example: equality and inequality constraints

Using the numerical data and assuming that

fy = 200 MWHh,
101 = (0 and
sax — gmax — 3000 MWh,

the problem above becomes



MPEC example: equality and inequality constraints

Minimizer ¢, s, spq0,  — T(s1 4+ f1) + 30,000 + 40(s1 + f1)
S. T.

4 40 + 0.0058; + pg = 0

— 7+ 100 — 0.005(s1 + 89 + f1 +200) =0

0 < 11y L(sy — 3000) < 0

450 4 0.00585 + f15 = 0

0 < 1L (59 — 3000) < 0




MPEC example: equality and inequality constraints

Taking into account previous equalities, A\ and Ay have
been replaced by —s; and —s9, respectively, in the prob-
lem above.



MPEC example: equality and inequality constraints

The analysis of the complementarity conditions allows
enumerating the four possible combinations of the final
values of s; and ss:



MPEC example: equality and inequality constraints

s1 < 3000 (1 = 0) and s9 = 3000 (pg > 0)
s1 < 3000 (g1 = 0) and s < 3000 (pg = 0).
s1 = 3000 (1 > 0) and sy = 3000 (e > 0)
s1 = 3000 (1 > 0) and sy < 3000 (g = 0)



MPEC example: equality and inequality constraints

The only feasible solution is achieved for the fourth case
with

s1 = 3000 MWh (p1 > 0) and
so < 3000 MWh (ue = 0).
Thus, the problem above can be simplified to



MPEC example: equality and inequality constraints

Minimizer f, s;.s0 .00 — T(s1 + f1) + 30,000 + 40(s1 + f1)

) ) 9 )

S. t.
™ =67 — 0.0025 f;
s1 = 3000

U1 = 12 — 0005f1
S9 — 3400 — O5f1
po =0



MPEC example: equality and inequality constraints

The solution of this problem is

fi = 3990 MWHh, s; = 3000 MWh, 7 = $57.025/MWHh,
1y = $2.025/MWHh, s = 1405 MWh, 15 = 0

and the profit for the first producer is $89, 004.
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Modeling Framework

* Bilevel Problem

minimize  Upper-Level OF
Upper-Level < subject to

Problem
Upper-Level Constraints

( minimize Lower-Level OF

subject to

N\

Lower-Level <

Problem Lower-Level Constraints
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Modeling Framework

Bilevel Problem

Upper-Level <
Problem

Lower-Level <

Problem

minimize Y (xy, A, 1)
Tyl p

subjeet. to
hY (zfyl A, p) = 0
9" (x [y, A, p) <0,

( minimize fY(z,y)
y
< subjeet-to
ht(z|y) =0 A
L gh(awy) <0 7
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Modeling Framework

 Bilevel Problem

Upper-Level <
Problem

Lower-Level <

Problem
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Modeling Framework

Bilevel Problem

Upper-Level <
Problem

Lower-Level <

Problem

subject to

hY (z,y

A, p

9" (z,y!

A,

y
subject

_/\

A. J. Conejo

ht(x,
\ gL(gj7

( minimize fY(z,y)

to

y) =0
y) <0
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Modeling Framework

— Linear Lower-Level Problem 4 Clearing
auctions
are
generally
minir/{lize Yz, y, \ 1) linear and
x?y? 7/’1‘ .
continuous
Upper—l_evel < SU_bjeCt tO in Euro e
Problem Pe
Y (z,y,\, 1) =0 not in the
UsS
9" (z,y, A, 1) <0, Y,
( minimize c(x)ly
: Y
Linear < ! subject to
Lower-Level D(z)y = e(x) “ \
Problem L A(x)y < b(z) v
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Modeling Framework

Single-Level
Problem

—> MPEC Problem

<

minimize Y (x,y, \, )
T,Y A 1

subject to
hY (2, y, A, p) = 0
g% (z,y,\, 1) <0,
Lower-Level

Optimallity
Condicions
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Modeling Framework

— Lower-Level Optimality Conditions

( minimize c(x)ly
Y

) subject to
D(x)y = e(x) DA
. Az)y < b(z) L
KKT Conditions
c(x) + A(x)T,u _ D(x)T)\ —0 Complementarity Condition
D(z)y = e(x), b(z) — A(z)y > 0
0 <b(x —A(:z:)yJ_,uZ(),< u =0
A free (b(gj) — A(g;)y)T (= O]:} Nonconvex!
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Modeling Framework

— Lower-Level Optimality Conditions

( minimize c(x)ly ( ma>§\imize —b(z) p+e(z)t A
Yy by
] bject to
) subject to { subj
Dy =clr) A ()" + D(@)"A = clx)
L A(x)y < b(x) L | u=>0, X : free

J

Primal-Dual Formulation
Strong Duality Equality <g c(2)Ty = —b(2) T+ e(x) TN,

Primal D(x)y = e(x), No complementarity
Constraints A(z)y < b(z), conditions!
Dual —A(x) '+ D(x)" ) = c(x),
Constraints 0>0, X : free
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Modeling Framework

— Lower-Level Optimality Conditions

2

N\

\

74

KKT Conditions

minimize c(x)ly
Y
subject to

D(x)y = e(x) )\
A(z)y < b(z)

N

Primal-Dual Formulation

=

) ) c(x)Ty = —b(z) T+ e(x)T A,
+ A(z) p—D(x) A=0 D(x )y—e(w)a

)y = e(z), A(z)y < b(z),

b(x) — A(x)y L p >0, —A(x)Tpu+ D(x)TA = ¢(2),

. free

>0, X : free
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Modeling Framework

— Formulations

KKT conditions LL Primal-Dual formulation LL
minimize Uz, y, A 1) minimize Uy, A p)
subject to subject to
W (2, y, A 1) =0 hY(,y, A, ) = 0
9" (z,y, A p) <0, 9" (z,y, A, 1) <0,
c(z) + A(x) ' p— D(x)"A =0 c(x)ty = —b(x) T+ e(x) T,
D(z)y = e(x), D(x)y = e(x), A(z)y <b(z),
: S;bge_ A=t — A@) "+ D(2)"A = c(x),

@w>0, X\ : free

Vv

Strategic Offering in a Pool
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Strategic Offering in a Pool

 |ntroduction

Strategic Power Producer

N

o Owns several generating units

o Units distributed throughout
the power network

o Competitive (non-strategic)
rival units

A. J. Conejo
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Strategic Offering in a Pool

 |ntroduction

\

o Maximizes the social welfare

o Cleared once a day, one day
ahead and on a hourly basis

o DC network (first and second
Kirchhoff laws)

o Hourly LMPs

A. J. Conejo

Producers’ offer

curves

Demands’ bid
curves

Pool—bal\s/leadr kEelfctricity [ fﬁ][ﬁf][ A ][HLJ{H“J

SN\ S

Market Clearing
Procedure

N

Market
Prices (LMP)

Dispatched
Energy
Quantities

15
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Strategic Offering in a Pool

 |ntroduction

Strategic Power Producer

Best offering strategy I'_‘_r'J Market
to maximize profit? Outcomes

Pool-based Electricity Market

A. J. Conejo
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Strategic Offering in a Pool

— Stackelberg Game

Leader <—

Follower <—

Strategic Power Producer

Market
Outcomes

Pool-based Electricity Market

A. J. Conejo
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Strategic Offering in a Pool

Upper-Level <:
Problem

January 7, 2015

- Bilevel Model

Profit Maximization

subject to Offering LMPs
curve Market
Outcomes

Social Welfare Maximization
(Market Clearing)

A. J. Conejo

18



Strategic Offering in a Pool

> MPEC Model

Profit Maximization

subject to Offering LMPs
Single-L | <:: curve Market
Ingie-Leve Outcomes

Problem

KKT Conditions

January 7, 2015 A. J. Conejo 19



Strategic Offering in a Pool

e Model Features

o Strategic offering for a producer in a pool anticipating
(with endogenous formation of) LMPs.

o Stepwise offer curves.
o Uncertainty of demand bids and rival production offers.

o MPEC approach under multi-period, network-constrained
pool clearing.

o MPEC transformed into an equivalent MILP problem.
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Upper-Level
Problem

Strategic Offering in a Pool

- Bilevel Model

minimize Costs - Revenues

subject to

<:: Increasing Offer Curves

Ramp Limits

A. J. Conejo
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Upper-Level
Problem

Strategic Offering in a Pool

- Bilevel Model

C .. SG pSG
minimize E Aoy Py — SJ At(n:iew,
(SG| PSS POSG PD. 6., EpL . ,
i J tib tib
subject to
a2y >0 Vt,Vi
< SG SG -

> PShe— > Phy <RPF

b b
Sa sG
Y PR =D PG < RP
b b

< T, V1

Vt < T, Vi

A. J. Conejo
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Lower-Level
Problem

Strategic Offering in a Pool

&

- Bilevel Model

minimize — Social Welfare

subject to

Power Balance per Bus

Production / Demand Power Limits

Transmission Capacity Limits

Angle Limits

A. J. Conejo
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Lower-Level
Problem

Strategic Offering in a Pool

&

- Bilevel Model

N

e . SG PpSG oG poOG D D
Psenllalglénjlalgea 2 :O‘tibJ tib T E :)‘tjb tjb Z)‘tdkptdk
tn

tib ' tib 07 tdk’ tib tjb tdk
subject to
SG oG D
Z Py + Z Py — Z Py,
(i€T,)b (JET,)b (deW, )k
— Z Bnm((stn - 5tm) : >\tn Vt,Vn
meo,

0 < Py’ < Pig™ g™ pggy ™™ V4, i, W
0 < PGy < POZ™c ™™, ™™V, 5, b

0 < PP, < pbmax . Dmin Dmax v v

Brm (0t — Op) < PAX 1 p2MaX g Y Ym € O,
— T < Gy S EIR gMAX g
Ot = 0 fg Vi,n=1

A. J. Conejo
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Lower-Level
Problem

Strategic Offering in a Pool

— KKTs Lower-Level Problem

(ft)n 1—0 Vt vn

mplementarity
Conditions

25

apny — At(niicw,) + poemax _ g SGmin — vt Vi b
ADS = M(njew,) + iy ™ = pog™™® =0 Vt,Vj,vb
- /\tdk + Ai(nidew,) Mtdl;?ax M?dl?m =0 Vt,Vd,Vk
S Bunlin = Am) + 3 Bum (v = vEme) + €5 — g
meo, meo,
Z Piiy Z tJb - Z Py, = Z B (04, — 6m)  VE,Vn
(i€, )b (JET,L)D (de¥ )k meO,
0in=0 Vt,n=1
0 < PSS L pS8min >0 Wt Vi, Vb
0< Py Lopgg™™ >0 Vt,Vj,vb
0< PR, L pubPmin >0 Vvt Vd,Vk
0 < Pogmex — PSS 1 pSGmex > 0 t, Vi, Vb
OGmax OGmax . _> Co
0 < PE™® — POF L pdSmma >0 Vt,Vj,Vb
0< PDmaX Ph, L pPmax > vt Vd, Yk
0< PR _ B (8tn — Opm) L VEDX >0 Vt,Vn,Vm € O,
0<7T— 0y LEMX>0 Vit Vn
0< T+ 06 LEMD >0 Vt,Vn
Ains ft : free Vi, Vn.
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Strategic Offering in a Pool

—> MPEC Model
Co. . SG pSG SG
. minimize E Apiv Prp’ — § E\t(n:iE\I/n)Ptib]
oSG pSG poOG pb. 5, =
tib % tib ** tgb 1t tdkPtn>—DL tib tib
subject to

ad$ >0 Vt,Vi
app > Opiy_qy  VE Vi Vb > 2

Single-Level SG SG UP
P o= P> < R,
Problem <: ; (t+1)ib ; tib > 11

> PR
Nonlinear!

\ KKTs Lower-Level Problem

o< P Lu>0]

Ut < T, Vi

(t+1)3b < R%O Vi < T,V’L

b
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Strategic Offering in a Pool

- Linearizations

January 7, 2015

A. J. Conejo

O<PLu>0
Fortuny-Amat
Transformation
P>0 Easy to select
w>0
r 5 Not that easy!
Alternative: Psu @/ (trial and error)
; < (] _
5051 p= (1= u)
variables u € {0,1}
\_

MPand MH are large enough constants (but not too large).

27



Strategic Offering in a Pool

- Linearizations

1. Use the strong duality equality to express the
nonlinear term (part of the primal objective
function )

SG
Ztib )‘t(mE\Pn)Ptz‘b
as a function of other linear terms

2. Linearize the other terms using some KKT
conditions
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Strategic Offering in a Pool

- Linearizations

> vin Me(niiew,) Py

Based on the strong duality Exact!
theorem and some of the KKT No approximation
equalities

Z )‘t(n:iE\Iln)PtSig} - Z A%%}Pt?z? + Z )‘tdthIc)lk

tib tjb tdk
Gmax OGmaX Dmax pDmax
E b E ::utdk: Pyar,
tjb tdk
o E ( mameax E :gmax E :fmln
tn(meov,,)
A. J. Conejo
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Strategic Offering in a Pool

—> MILP problem

MPEC
Model

MILP
Problem

Bilevel :
Model

!

Direct solution:
CPLEX, XPRESS,
GUROBI

January 7, 2015 A. J. Conejo
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Strategic Offering in a Pool

e Stochastic Model

Uncertainty incorporated by using a set of

scenarios modeling different realizations of:

o Consumers’ bids
o Rival producers’ offers

Robust Optimization fits naturally here!

A. J. Conejo
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Strategic Offering in a Pool

e Stochastic Model

Deterministic model for each scenario W

V

Pairs of production quantity (P25 ) and
market price (Ainw)-

V

Building of the optimal offering curve



Strategic Offering in a Pool

e Stochastic Model

MPEC MPEC MPEC MPEC
e o o
Scenario 1 Scenario 2 Scenario w Scenario Q
sG \o. PSG sG \q, P56
A1, Py 2, 175 Ao, PO 0, L0
Price . /
———————— Optimal
"""""""""""""""""" offering curve
hour t T
Production
January 7, 2015 A. J. Conejo
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Strategic Offering in a Pool

e Stochastic Model

o To ensure that the final offering curves are increasing in price some
additional constraints are needed.

o These constraints link the individual problems increasing the
computational complexity of the model.

)\tnw — )\tnw’ S Clﬁtz'ww/Mx Vt,VZ S \Ifn,Vw,Vw/ > W
)\tnw — )\tnw’ Z (xtiww’ — 1)Mx \V/t,\V/Z € \Ifn,Vw,Vw’ > W

Z S Z S < i MYV Y Y, Ve > w

Z PSS Z P2 > (Ytiwe — 1) MY Y, Vi, Yw, V' > w

Ttiww' T Ytiww' = 22t \V/t,VZ, Vw,Vw’ > W

Ltiww’s Ytiww’ s Ftiww’ S {07 1}



Robust Optimization

How to build offering curve in a robust optimization framework?
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Strategic Offering in a Pool

e Stochastic Model

A. J. Conejo
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Strategic Offering in a Pool

Stochastic Model

o Direct solution: CPLEX, XPRESS,
GUROBI

o Decomposition procedures
(Lagrangian Decomposition)

A. J. Conejo
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Strategic Offering in a Pool

e Stochastic Model

Intractability is an issue:

A robust model may be advantageous



Strategic Offering in a Pool

* |llustrative Example

N7\
O oJe

N1 — N2

N4

D1 03 S3
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Strategic Offering in a Pool

[ 24 hours

— Data

Demand data (per unit)

[€/MWh]

10 | 11 | 12

13 | 14 | 15 | 16

17

18

19

20

21

22

23

24

25.000

0.9

0.9

0.9

0.9

0.9

0.9

24.968

0.9 (0.025

0.025) 0.9

0.025

0.025

0.025

0.025

0.9

22.628

0.025(0.025

0.025|0.025

0.025

0.025

0.025

0.025

0.025

20.876

0.025(0.025

0.025|0.025

0.9

0.025

0.025

0.025

0.025

0.025

20.606

0.025(0.025

0.025/0.025

0.025

0.025

0.025

0.025

0.025

0.025

20.378

0.9 0.025

0.025{ 0.9 | 0.9

0.025

0.025

19.922

0.025

0.025(0.025

0.025

19.532

0.025

0.025(0.025

0.025

0.9

19.232

0.9

0.025

0.025(0.025

0.025

18.932

0.025

0.025

0.025(0.025

0.025

18.806

0.025

0.025

18.344

0.025

0.025

18.152

0.025

17.940

0.9

0.9

17.612

0.025

0.025

17.430

0.9

0.025

0.025

17.250

0.025

0.9

0.9

0.025

/l

17.216

0.025

0.025

0.9

0.9

0.025

0.025

16.886

0.025

0.025

0.025

0.025

0.9

0.9

0.025

5 blocks

0.025

0.025

16.790

0.025

0.025

0.025

0.025

0.025

0.025

0.025

16.380

0.025

0.025

0.025

0.025

0.025

0.025

16.320

0.025

0.025

0.025

0.025

16.130

0.025

0.025
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Strategic Offering in a Pool

—> Data
Generating units type and data
Unit Type oil oil | hydro | coal oil coal oil coal | nuclear
PIMW] 12 | 20 50 76 | 100 | 155 | 197 | 350 | 400
Prax[NMW] 24 | 158 | 15 | 152 | 25 |54.25(68.95| 140 | 100
P [NMW] 34 | 02 | 15 | 228 | 25 |3875(4925| 97.5 | 100
P [MW] 36 | 38 | 10 | 228 | 20 | 31 | 394 | 525 | 120
P [MW] 24 | 02 | 10 | 152 20 | 31 | 394 | 70 80
AVOSE/MWh] | 2341 [ 11.09 | 0 | 11.46 | 18.60 | 9.92 | 10.08 | 19.20 | 5.31
AYOCTE/MWh] | 2378 [ 1142 | 0 | 11.96 | 20.03 | 10.25 | 10.66 | 20.32 | 5.38
AYOC[€/MWL] | 26.84 [ 16.06 | 0 | 13.89 | 21.67 | 10.68 | 11.09 | 21.22 | 5.53
;;,oc [€/MWh] [ 3040 | 1624 | 0 | 1597 | 22.72 | 11.26 | 11.72 | 22.13 | 5.66
RYP[MW /h] 30 | 90 - 60 | 210 | 90 | 90 | 120 | 600
RY“C[MW /h] 30 90 - 60 | 210 | 90 90 120 600

A. J. Conejo
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Strategic Offering in a Pool

— Data

Generating units location Demand location
Strategic units || Non-strategic units D | Bus | Factor (%)
Si | Type | Bus || Oj | Type | Bus D1 3 19
S1 | 155 1 O1 | 350 1 D2 4 27
S2 | 100 2 02| 197 2 D3 5 27
S3 | 155 3 03| 197 3 D4 6 27
S4 | 197 6 || O4| 155 5

01 81 02 §2 D2 04 D3

N1 N4

Left-hand
Area

Right-hand
Area

N6

D1 03 S3 D4 54

January 7, 2015 A. J. Conejo



Strategic Offering in a Pool

— Uncongested Network Results

Strategic units Non-strategic units

Strategic Offer Strategic Offer

S1 [s2| s3 S4 | Total 01| 02 03 O4 | Total
Producti oducti
POQUCHON | 518 | 0 | 3464.8 | 37824 | 10749 Froduction oo | aras | 3720 | 13176
[MWH] [MWH]
Profit [€] | 27202 | 0 | 27038 | 28861 | 83101 Profit [€] | 0 | 34935 | 34935 | 28724 [ 98594

Marginal-Cost Offer Marginal-Cost Offer
Producti Productic
FOCUEHOT 3200 | 0 | 3720 | 3805.2 | 11245.2 roduction |1 e as80 | 3720 | 12305
[MWH] [MWH]
Profit [€] | 4826.7 | 0 | 4826.7 | 4562.5 || 14216 Profit [€] | 0 | 4562.5 | 4562.5 | 4826.7 | 13952

Huge differences due to small size example

January 7, 2015 A. J. Conejo



Strategic Offering in a Pool

— Uncongested Network Results

20.5

20

19.5

—
O
T

—
o0
I

Prices [euro/MWh]

17+

16.5

16

| | | | | | | | | | | | | | | | | | | | | | | |
o1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Time period

Marginal-cost competitive offer price=[11.72 €/MWh | for all time periods




Strategic Offering in a Pool

No

- Congested Network Results congestion
expected

Capacity of line 3-6 limited to 230 MW (slightly above):

A\

01 81 02 S2 D2 04 D3

O O

N1

Left-hand

Area

Right-hand

Area

D1 03 S3 D4 5S4

January 7, 2015 A. J. Conejo
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Strategic Offering in a Pool

— Congested Network Results

Capacity of line 3-6 limited to 230 MW:

Strategic units

The strategic\
producer
reacts
congesting
the network/

S1 S2 S3 S4 Total
Production Uncong. case
roduct
V 3477.9 | 0 | 3498 | 3773.1 | 10749 33101
[MWHh]
Profit [€] | 2691 | 0 | 27068 | 30519 [[84574 —
Non-strategic units
01 02 03 04 Total Uncong. case
Producti 7y
roduction | oo | 4ras | 37201 | 13176 98594
[MWh] (/
Profit [€} 0 35299 | 34572 | 30153 (1100024

A. J. Conejo
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Strategic Offering in a Pool

— Congested Network Results
Capacity of line 3-6 limited to 230 MW:

LMPs [euro/MWh]

l( Il 1 1 1 1 Il 1 1 Il Il Il 1 1 1 1 1 1 Il
‘l 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24
Time period

A. J. Conejo
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Strategic Offering in a Pool

Congestion
— Congested Network Results expected
Capacity of line 4-6 limited to 39 MW (slightly below):
01 S1 (0] S I D2 04 D3 .
p | 200
I 19.5
N1 b I N4 — -
[ § 19 \—/
Left-hand : Right-hand ‘-25 18.5
Area Area 5
| AT
|
| DE 1751
DL 03 S3 | D4 S4 17
Strategic units 01 2 3 4 5 6 7 8 9 lii_\lll;lgplélll;(lii 16 17 18 19 20 21 22 23 24 25
S1 S2 S3 S4 Total Uncong. case \ ; '
Producti - o congestion!
FOCUCHON 36103 | 0 | 3356.3 | 3782.4 | 10749 33101 8
MWHh]

Profit [€] | 28027 | 0 | 26214 | 28861 l83101 g—/\

January 7, 2015 A. J. Conejo




Strategic Offering in a Pool

— Stochastic Model

o Uncongested network case

o 8 equally probable scenarios

o They differ on the rival producer offers (\:):,) and

on the consumer bids (M.
o Selected to obtain a wide range of prices



Strategic Offering in a Pool
— Stochastic Model Results

Strategic units

Strategic Offer
S1 S2 S3 S4 Total

E. Production
MWHh]
E. Profit [€] | 16354 | 0 | 15657 | 16615 || 48626
Marginal-Cost Offer

3088.3 | 0 | 3008.6 | 3326.7 | 9423.6

E. Production
MWHh]
E. Profit [€] | 6430.4 | 0 | 6430.4 | 7281.1 ||20141.9

23314 | O | 2437.6 | 2715.2 | 7484.2

January 7, 2015 A. J. Conejo
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Strategic Offering in a Pool

— Stochastic Model Results

Offering curves for strategic unit 1

*
70 80 90 100 110 120 130 140 150
Production [MWh]
70 80 90 100 110 120 130 140 150

Production [MWh]

t=9

—— e —

Prices [euro/MWHh]

S

Prices [euro/MWh]

A. J. Conejo

Hourly

offering
curves!
TIO SIO 9I0 l(IJ(J liO 150 13‘0 ILIIO 15‘0
Production [MWh]
t=10
' ‘ i q
[«
7"0 SIO 9I0 100 liO lé() 1£0 lﬁlt() 15‘0
Production [MWh]

t=13

51
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Strategic Offering in a Pool

Case Study
IEEE One Area Reliability Test System

24 Nodes
/ strategic units

11 non-strategic units

17 consumers
24 hours

O O O O O

Southern
Area

A. J. Conejo
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Strategic Offering in a Pool

—> Results
Strategic units
Strategic Offer
S1 2 S3 54 S5 S6 S7 | Total
Production "0 o 10os | so4 | 4728 | 3101 | 9600 | 3720 | 28113
[MWH]
Profit [€] | 27929 | 13965 | 3287.3 | 47959 | 38689 | 148120 | 38983 318932
Marginal-Cost Offer
Producti
FOCUEMON oo g | 1824 | 1060 | 4728 | 3720 | 9600 | 37200 | 28300
[MWHh]
Profit [€] | 27245 | 13625 | 3449.3 | 47296 | 37815 | 145170 | 38773 313373
January 7, 2015 A. J. Conejo
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Strategic Offering in a Pool

- Results

Non-strategic units

Strategic Offer
01 02 03 04 05 06

Producti

POCUEHOT 960 | 060 | 1824 | 2120 | 9456 | 270

IMWH]

Profit [€] | 8455 | 8455 | 13965 | 7644 | 95919 | 358
07 | 08 09 | 010 | O11 | Total

Producti

POCHEHOI T 3200 | 0600 | 7200 | 3720 | 4340 | 44170

MW

Profit [€] | 38948 | 148120 | 150430 | 38983 | 15381 | 526650
Marginal-Cost Offer
01 02 03 04 05 06

Production
[MWHh]
Profit [€] | 8275 8277 13625 | 6899 | 94593 177
o7 08 09 010 011 Total

960 960 1824 2120 | 9456 227

Production , o

. 3720 9600 7200 3720 4340 44170
[MWHh]

Profit [€} 37785 | 145160 | 148210 | 38773 | 14913 | 516680

—_—

January 7, 2015 A. J. Conejo



Strategic Offering in a Pool

- Results

Marginal cost offer

Strategic Offer

LMPs [euro/MWh]

23+

ra
2
T

=

3 20_

=

—~

g:? 19

=}

2,

” 18-

o

= |

- 17
16

| | 1 | 1 | 1 | 1 | 1 1 | | 1 | | | 1 1 1
1 2 3 4 5 6 7 8 9 1011 1213 14 1516 17 18 19 20 21 22 23 24
Time period

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time period

January 7, 2015 A. J. Conejo

N/

No congestion
(not profitable)
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Strategic Offering in a Pool

— Computational Issues

Model solved using CPLEX 12.0.1 under GAMS on a Sun Fire X4600 M2 with 8
Quad-Core processors at 2.90 GHz and 256 GB of RAM.

[.LE. Uncong. | I.LE. Cong. | I.LE. Stoch. Case Study
CPU time [s] 1.97 5.30 75.76 449.98 (=~ 7 [min])

T Size of the problem
T Line congestion
T Scenarios



Conclusions

* Procedure to derive strategic offers for a power producer in a network
constrained pool market.

— LMPs are endogenously generated: MPEC approach.
— Uncertainty is taken into account.
— Resulting MILP problem.
e Exercising market power results in higher profit and lower production.

* Network congestion can be used to further increase profit.



Future work

Robust optimization is a natural option to
model uncertainty parameters in this
problem:

* Rival producer offering behavior
* Demand bidding behavior



January 7, 2015

Jm

A.J. Conejo

59



Strategic Bidding for a Large Electricity
Consumer: A Complementarity Approach

THE OHIO STATE UNIVERSITY

A oo

LAl 8
= ey e

Antonio J. Conejo, The Ohio State University
S. Jalal Kazempour, Johns Hopkins Univ., Carlos Ruiz, Univ. Carlos Ill de Madrid
2014



Outline

* Background

Motivation

e Approach

* Example and case study
* Conclusions

* Reference

January 7, 2015 A. J. Conejo



Background

Large Consumer

* Comparatively high consumption level
* |t owns a large number of loads

* Loads may be distributed throughout the network

January 7, 2015 A. J. Conejo



Background

Strategic Large Consumer

Characteristics:

* Market power in the demand side
* A fraction of its loads is elastic enough to play strategically

* |tis able to anticipate the behavior of other players

January 7, 2015 A. J. Conejo



Background

Strategic Large Consumer

Aim:

* To manipulate the market prices to its own benefit

Januar y 7, 2015 A. J. Conejo



Background and Aim

Pool-based electricity market

* Cleared once a day, one day ahead and on a hourly basis

* DC representation of the network including first and second
Kirchhoff laws

* Locational Marginal Prices (LMPs)

Januar y 7, 2015 A. J. Conejo



Motivation
A

Gl G2 D2 DI —— 50 MW ($70/MWh)

10 MW ($35/MWh)
A single node

Price ($/MWh)

— (8]
wn -]
T

G1, G2: Generators
D1: Large consumer
[D2: Another consumer

Quantity (MW)

Utility of Large Consumer: Market clearing price
[50 MW x(70-30) $/MWh] + [10 MW x(35-30) $/MWHh] $30/MWh
= $2050

January 7, 2015 A. J. Conejo



Motivation

Utility of Large Consumer: 4 50 MW ($70/MWh)
———— 50MW (8
[50 MW x(70-15) $/MWh]
+ [5 MW x(35-15) S/MWh] =
= =
52850 g 10 MW ($35/MWh)
30t
———— 50 MW ($70/MWh) & 15
=
E Quantity (MW)
oo
=50 F
2 ‘ 10 MW ($15/MWh)
15 F —— Market clearing price
\ S30/MWh
.

Quantity (MW) Market clearing price Utility = $2050
January 7, 2015 AJCOSﬂJ_‘S/l\/IWh



Motivation

» To derive the strategic bidding curve for a large
consumer

" Challenge: diverse sources of uncertainty
e Offer price of generators
* Bid price of other consumers
e Other uncertainties

= Approach: Stochastic complementarity model
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Approach

Strategic large consumer

Best bidding strategy to
maximize utility

A

Pool-based electricity market

One market clearing problem per scenario!

A. J. Conejo
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Approach

Strategic large consumer

Scenario-independent
bidding decisions
(a single bidding curve)!

Best bidding strategy to
maximize utility

A

Pool-based electricity market

Multiple market clearing problems (stochastic)!

A. J. Conejo

11
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Approach

Two alternatives:

1) Scenario-independent bidding decisions

(Computationally expensive)

2) Scenario-dependent bidding decisions

. To enforce that the bidding curve is decreasing in price

 To derive the scenario-independent bidding curve using an ex-post analysis

A. J. Conejo

12



Approach

Bilevel model:

Upper—LeveI 5 Utility Maximization
subject to . "y
Bidding * Consumption quantities
curve * LMPs (dual variables)
Lower-Level

Social Welfare Maximization
(market clearing one per scenario)

___________________________________________________________

Convex problems

January 7, 2015 A. J. Conejo
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Approach

MPEC:
Upper—LeveI Utility Maximization
subject to | -
Bidding Consumption quantities
curv:_‘_‘_\_‘—\ @ ﬁ * LMPs (dual variables)
Lower-Level __________________________________________________________
' KKT Conditions
A. J. Conejo
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Approach

Upper-Level - Utility Maximization:

[ Maximize expected utility

subject to:

Ve

Load pick-up and drop ramping limits

Ve

Minimum energy requirement over the time horizon

-

Bidding curve blocks:

* Non-negative

* Lower than the bid price cap
* Decreasing in price

A. J. Conejo
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Quantities and prices €

Januar y 7, 2015

Approach

Lower-Level - Market Clearing

subject to:

-

Maximize Social Welfare

-~

Power Balance

A. J. Conejo

16



subject to:

Januar y 7, 2015

Approach

Lower-Level - Market Clearing

-

N

Production / Demand Power Limits

AN

Transmission Capacity Limits

2N

N[/

Angle Limits

A. J. Conejo
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Approach

MPEC-> Single-level Optimization Problem

Condition enforcing the decreasing shape
of the bidding curve (linking constraint)

18



Januar y 7, 2015

Approach

MPEC-> Single-level Optimization Problem

A.J. Conejo
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Approach
Heuristic Solution (coordinate descent algorithm*)

1. To solve MPECs, one per scenario, individually (without enforcing linking condition)
2. To order MPECs from the highest to lowest average LMP

MPEC for MPEC for MPEC for
. 0o . a
scenario 1 scenario N-1 scenario N

Highest avg. LMP Lowest avg. LMP

*D. G. Luenberger, Introduction to linear and nonlinear programming. New York, NY, USA: Addison-Wesley, 1973.

January 7, 2015 A. J. Conejo
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Approach

Each MPEC problem:

Non-linear mathematical programming problem

Mixed-integer Linear
mathematical programming problem

C. Ruiz and A. J. Conejo, “Pool strategy of a producer with endogenous formation of locational marginal
prices,” IEEE Trans. Power Syst., vol. 24, no. 4, pp. 1855-1866, Nov. 2009.

A. J. Conejo
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Example
Data:

D1, D2 and D3 - Large consumer
Q1 and Q2 > Other consumers

D3

Ql D1 D2 Q2

Large consumer = D1, D2 and D3 (42% of peak demand)

Three time periods

Minimum energy requirement = 70% of total load over the time horizon
10 scenarios (offering uncertainty of the producers)

January 7, 2015 A. J. Conejo
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Results:

Case

Total expected
Utility [S]

Expected unserved
energy for the large
consumer [MWAh]

Market price
(for a particular scenario)
[S/MWh]

January 7, 2015

Example

Non-strategic
Bidding

5958

8.6

23.52 (t1)
19.08 (t2)
16.02 (t3)

A. J. Conejo

Strategic
Bidding

6695

65.5

22.26 (t1)
18.00 (t2)
13.72 (t3)

23



Example

Bidding curve for demand D3 in peak hour t1:

January 7, 2015

Sce.1 Sce.2 Sce.3 Sce.4 Sce.5 Sce.6 Sce.7 Sce.8 Sce.9 Sce.l10
LMP 16.80 17.49 19.08 20.67 22.26 17.49 19.08 20.67
[S/MWh]
Block1 40.0 40.0 40.0 40.0 400 283  40.0 400 40.0 283
[(MW]
Block2 100 5.0 5.0 5.0 5.0 0 5.0 5.0 5.0 0
[MW]
Block3  15.0 0 0 0 0 0 0 0 0 0
(MW]
Block 1:

= 28.3 MW is supplied across all scenarios = 22.50 < bid price < cap

A. J. Conejo
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Example

Bidding curve for demand D3 in peak hour t1:

Sce.1 Sce.2 Sce.3 Sce.4 Sce.5 Sce.6 Sce.7 Sce.8 Sce.9 Sce.1l0

LMP 16.80 17.49 19.08 20.67 2250 17.49 19.08 20.67 22.50
[S/MWh]

Block1  40.0 40.0 40.0 40.0 40.0 28.3 40.0 40.0 40.0 28.3
[MW]

Block 2 10.0 5.0 5.0 5.0 5.0 0 5.0 5.0 5.0 0
[MW]

Block 3 15.0 0 0 0 0 0 0 0 0 0
[MW]

Block 1:
= 28.3 MW is supplied across all scenarios = 22.50 < bid price < cap
= 11.7 MW (40 - 28.3) is supplied in scenarios 1-5 and 7-9
- bid price = 22.26

January 7, 2015 A. J. Conejo 25



Example

Scenario-independent bidding curve for demand D3 in peak hour t1:

[\
L4

N

o

)

o
I

Bidding price
[$/MWh]

16.8 | ,
0 28.3 45 65
Consumption [MWh]

January 7, 2015 A. J. Conejo



Large-scale case study

Data:

= One-area 24-node IEEE RTS system

= 24 time periods

= large consumer =2 36% of peak demand

= Minimum energy requirement = 70% of total load over the time horizon
= 50 scenarios (offering uncertainty of the producers)

Results:

= The total expected utility increases 6.7% in the strategic bidding case
with respect to non-strategic bidding case.

January 7, 2015 A. J. Conejo 27



Large-scale case study

LMP in a particular node with and without strategic bidding:

LMP
(S/MWh)

- M = Strategic bidding
-—8-— Non-strategic bidding

—
o
1

1 2 4 6 8 10 12 14 16 18 20 22 24

Hour

January 7, 2015 A. J. Conejo 28



Conclusions

* To derive the strategic bidding curve for a large consumer in a network-
constrained pool

* LMPs are endogenously generated
* Uncertainty is taken into account
* Resulting MILP problem

 Strategic behavior results in higher utility and lower LMPs



Reference

v’ S. J. Kazempour, A. J. Conejo, C. Ruiz, “Strategic bidding for a large
consumer,” IEEE Transactions on Power Systems, in press.

January 7, 2015 A.J. Conejo 30



Jm

January 7, 2015

A.J. Conejo

31



Strategic Generation Investment

THE OHIO STATE
UNIVERSITY

A. J. Conejo
The Ohio State University, 2015



overview

Reading e )

 F. H. Murphy and Y. Smeers, “Generation capacity expansion
in imperfectly competitive restructured electricity markets,”
Operations Research, vol. 53, no. 4, pp. 646—661, July—August
2005.

« S.J. Kazempour, A. J. Conejo and C. Ruiz, “Strategic Generation
Investment using a Complementarity Approach”. |EEE
Transactions on Power Systems, vol. 26, no. 2, pp. 940-948,
May 2011.

Real-world modeling
emphasized

January 7, 2015 A. J. Conejo
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Main two Issues

* Uncertainty: stochastic modeling

 Market: complementarity modeling

:

Januar y 7, 2015 A. J. Conejo



Main two Issues

* A minimum-cost approach does not fit
within a market environment!

—
"

Januar y 7, 2015 A. J. Conejo



Introduction

 Static vs. dynamic (multi-stage) modeling

 Dynamic: better description of the actual decision-
making process. Multiple decision points.

e Static: appropriate tradeoff between accuracy and
computational complexity. Only the final year of the
planning horizon is considered (all monetary figures
should be referred to that year).



Introduction

We assume perfect foresight on the cost of money,
which is nowadays a strong assumption

January 7, 2015 A.J. Conejo



Introduction. Model features

e Static vs. dynamic (multi-stage) modeling: static
* Uncertainty! Scenario modeling:

v Load level

v Consumer bids

v Rival producer behavior (offering and investment)



Introduction. Imperfect foresight

Imperfect
foresight

N

e Demand data *
: . Investment
* Generation unit data * »

* Rival data *

January 7, 2015

¥ : combinatorial explosion!

Generation

units to
build

Tool

A. J. Conejo



Introduction. Generation investment

Strategic producer

Rival competitive producers (otherwise we need an
equilibrium model)

Uncertainty: multi-scenario!
Bilevel = Stochastic MPEC = MILP
Solution: B&C



Background and aim

Strategic power producer

 Comparatively large number of generating units

* Units distributed throughout the power network



Background and aim

Pool-based electricity market

Cleared once a day, one day ahead and on a
hourly basis

DC representation of the network including first
and second Kirchhoff [aws

Hourly Locational Marginal Prices (LMPs)
No futures markets



Background and aim

Strategic power producer

Best investment options and
Best offering strategy to
maximize profit

Pool-based electricity market




January 7, 2015

Demand

Background and aim

Time

A. J. Conejo

Scenarios
per
demand
block

~N

J
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Approach

Bilevel model:

|
Upper-Level i Profit Maximization
|

subject to Investments LMPs
Offering Dual Variables

Social Welfare Maximization

I
Lower-Level ,
| (Market Clearing)



MPEC:

Upper-Level

Approach

__________________________________

Investments
subject to Offering LMPs
curve

=
=~
_I
D)
O
=)
Q
=
O
S
n



2)

3)

Approach
Strategic investment and offering for a producer in a
pool with endogenous formation of LMPs.

Uncertainty in demand, rival production offers and
rival investments.

MPEC approach under network constrained pool
clearing.

MPEC transformed into an equivalent MILP.



Deterministic model

Upper-Level - Profit Maximization:

Minimize [ Costs - Revenues

subject to:

-

Investment options

Price = Balance dual variable

Januar y 7, 2015 A. J. Conejo
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Deterministic model

Lower-Level - Market Clearing

Powers and prices €

subject to:

-

Maximize Social Welfare

/

Power Balance

A. J. Conejo
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Deterministic model

Lower-Level - Market Clearing

subject to:
4 A
Production / Demand Power Limits
- Y,
4 )
Transmission Capacity Limits
. J
4 )
Angle Limits
- Y,

A. J. Conejo
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Deterministic model

Linearizations

The MPEC includes the following non-linearities:

1) The complementarity conditions (0<a 1 b>0).

2) Theterm AenF;p inthe objective function.



January 7, 2015

Deterministic model

Linearizations - Complementarity Conditions

\
< > :
Fortuny-Amat 0<alb=0 Using 5051
transformation U variables is
an
>

a=0 alternative

b>0 /

a<uM

b<(1-u)M

Ue {0,1}

M Large enough constant (but not too large)

A. J. Conejo
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Deterministic model

° ° ° ‘5"
Linearizations > M. P},

Problem-dependent procedure

A. J. Conejo
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Deterministic model

Mixed-Integer NONLINEAR mathematical
programming problem

Mixed-Integer LINEAR

mathematical programming problem:
Tractable
Sufficiently well-conditioned



Stochastic model

Uncertainty incorporated by using a set of
scenarios modeling different realizations of:

e Consumers’ bids
* Rival producers’ offers
e Future demands

 Rival investments



Robust optimization

A robust optimization model fits here naturally. Uncertainty
involves:

 Consumers’ bids *
 Rival producers’ offers %
e Future demands

e Rival investments ¥
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Demand

Market scenarios

/

—

A. J. Conejo

Time

Scenarios!

27



Stochastic model. Math structure




Stochastic model. Math structure

- Complicating
variables

=

Decomposable!

Januar y 7, 2015 A. J. Conejo
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Stochastic model. Math structure

1. Direct solution: CPLEX, GUROBI

2. Decomposition procedures (Benders’ l"i

decomposition). This is a good idea since scenarios
convexify!

D. P. Bertsekas, and N. R. Sandell, “Estimates of the
duality gap for large-scale separable nonconvex
optimization problems,” 21st I|EEE Conference on
Decision and Control, Miami Beach, Florida, pp. 782- 785,

Dec. 1982.

A. J. Conejo
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Investment

cost New unit

Formulation profit

Minimize ZK X;

_ Z Pw Z Ot{ Ptszw)‘tn’w Z PtSLwC'LS
w t

L[ ’LE\IJ
E Ptkw)\tnw E tkw
k,[n:kew,]
SUbjeCt to: Existing unit
profit
A. J. Conejo 31



Investment
in discrete
sizes

Formulation

X; = Zuith'hy Zuzh =1, wuy €40,1}, Vi
h

)\tnwy Ptzun Ptkw C arg min { E :&tzw tiw

_I_Zatkw Z tgw t]w Z PtIc)iw

Subject to: /

Minus social welfare

January 7, 2015 A. J. Conejo
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Formulation

Z tdw - Z Bnm (etnw o etmw

2 : trw

1ev,,

Z tkw Z tjw — . )‘tnwy Yn

kEYn JET,

Energy
balance per

bus
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Formulation

Smin Smax

OgPtS < X Mg s Miw Vi

KT —

ES ESmax . ESmin ESmax
0 < Pirw < I s Mtkw s Mtkw Vk

O Omax . Omin Omax .
OSPtjw Spjw °:utjw 7:utjw ’ VJ

Production
bounds

January 7, 2015 A. J. Conejo
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Formulation Jemand ]

max Dmin Dmax

D .
0 < Paw < P Hidw s Mtdw 5 VO
_an < Bnm(etnw o Htmw) < an - Vinmwsr Vinmuw

Vn,Vm € (),

min max
—T S etnw S 7T : gtnum ftnw) \V/TL

Otrw = 0 35;0» nzl}[Vt,Vw]

Transmission
line bounds
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Notation. Indices

t Index for demand blocks running from 1 to 7.

i/k Indices for the new/existing generating units of the
strategic producer running from 1 to I /K.

7 Index for other generating units (owned by other pro-
ducers) running from 1 to J.

d Index for demands running from 1 to D.

h Index for available investment capacities running from
1to H.

n/m Indices for buses running from 1 to N/M.



Notation. Constants

o; Weighting factor of demand block t.
K; Annual investment cost of new unit 2.
X;n, Option A for investment capacity of new unit .

P,;Esmax Capacity of existing generation unit k of the strate-
gic producer.

P]Qmax Capacity of generation unit j of other producers.

PO™ Maximum load of demand d in block t.



Notation. Constants

C? /CE> Marginal cost of new/existing unit i/k of the
strategic producer.

C’t? Price offer of unit j of other producers in demand
block t.

UD Price bid of demand d in demand block t.

B, Susceptance of line n — m.

max

F, . Transmission capacity of line n — m.



Notation. Variables

X; Capacity investment of new unit ¢ of the strategic
producer.

o, /ot Price offer by new /existing unit i /k of the strate-
gic producer in demand block t.

P2/ P55 Power produced by new /existing unit i /k of the
strategic producer in demand block %.

Pt? Power produced by unit 7 of other producers in de-
mand block ¢.

Ptg Power consumed by demand d in demand block ¢.

0:, Voltage angle of bus n in demand block ¢.



Example

Generation prevails

North-south
interconnected
tie-lines

N6 N4

South

. Demand prevails

D3 04

January 7, 2015 A. J. Conejo
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Example: Investment options

: Base Peak
Option
technology technology
Investment
Cost (€/MW) 75000 15000

Capacity (MW)

0, 500, 750, 1000

0, 200, 250, 300, 350,

400, 450, 500, 550, 600,
650, 700, 750, 800, 850,
900, 950, 1000

Cost: block 1
(€/MWh) o0t o
Cost: block 2 14.72 15.20

(€/MWh)

A. J. Conejo
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Example: Investment results

Capacity of tie-lines

Uncongested 450 MW

150 MW

Base technology

500 (north) 500 (south)

500 (south)

(MW)
Peak technology 200 (south) 200 (south) 600 (south)
(MW)
Total i(rIDI/\?Vs)tment 700 700 1100
Investment profit A5 55 45 55 47.64

(M€)

A. J. Conejo
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:

4
Demand block

Demand block

A. J. Conejo

Example: LMPs

Cases: uncongested
and 450 MW of
transmission capacity

Congested case: 150
MW of transmission
capacity

LMPs in the south area are higher!

43
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Example: Stochastic case

Uncertainties:
e Rival investment
* Rival offering

Number of scenarios 1 4 12
Base technolo
i 500 (south) : 500 (north)
(MW)
Peak technolo 350 (north
9 200 (south) (north) 200 (south)
(MW) 350 (south)
Total investment
(MW) 700 700 700
Investment profit
45.55 32.25 31.38

(M€)

A. J. Conejo
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Example: IEEE one-area RTS

Number of scenarios

One

12
(reduced version)

Base technology

(MW)
Peak technolo
9 750 (bus 15) | 550 (bus 11) 450 (bus 23)
(MW)
Total investment (MW) 750 550 450
Investment profit
82.97 65.66 61.95
(M€)
Optimality gap (%) 0.10 1.00 1.75
CPU time 12.14 (s) 3.95 (hours) 3.76 (hours)

The resulting model, although computationally expensive, is tractable!

A. J. Conejo
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Conclusions

* Procedure to derive investments for a power
producer in a network constrained pool.

— LMPs are endogenously generated.

— Uncertainty is taken into account.
— MILP problem.

e Strategic behavior results in higher profit and lower
production.

* Network congestion can be used to further increase
profit.
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1. Motivation and approach

Wind power investor:

seeks to determine

the wind power capacity to be built that
maximizes its expected profit and
minimizes the risk of profit volatility.

v Where to build?

v' When to
v Which ca

ouild?

nacity to build?

Antonio J. Conejo



1. Motivation and approach

v Where to build?

= Nodes where construction is possible

= At nodes with the best wind power
conditions

= At nodes “well connected” to the system

Januar y 7,2015 Antonio J. Conejo



1. Motivation and approach

v When to build?

It depends on:

" |nvestment cost uncertainty
"  Wind production & demand uncertainty

Januar y 7,2015 Antonio J. Conejo



1. Motivation and approach
v" Which capacity to build?

It depends on:

= Wind production uncertainty
" Demand uncertainty
= Prices

Januar y 7,2015 Antonio J. Conejo



1. Motivation and approach

v How to solve this problem?

= Stochastic complementary model
"  Multi-stage model
= Risk-constrained model

Januar y 7,2015 Antonio J. Conejo
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2. Problem description

v' Maximization of the wind investor profit
v" Minimization of the risk of profit volatility

v" Pool based electricity market:
* The wind producer offers at zero price (price taker!)
= The wind producer is paid the LMP of it node

v' Given transmission capacity (dc model)

Antonio J. Conejo
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2. Problem description

v Time framework:

Period 1
\
[
Hl O
Y1 Y2 ™ YN
A

Investment 1

Period 2
\

[ |
B0 - O
Y1 Y2 ™ YN
A

Investment 2

Antonio J. Conejo

B Reference year

Period T
\

[ |
B0 - O
Y1 Y2 ™ YN
A

Investment T

10
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2. Problem description

v' Demand and wind production
modeling:

1. K-means clustering technique:

uncertainty

Historical data set » Reduced data set

Antonio J. Conejo
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2. Problem description

v Demand and wind production uncertainty
modeling:

2. Scenario tree:

Scenario DW1

Scenario DW?2

Scenario DW3

Scenario DW4

: : :

INVESTMENT 1 INVESTMENT 2 MARKET CLEARING 2

MARKET CLEARING 1
January 7, 2015 Antonio J. Conejo 12
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2. Problem description

v Investment cost uncertainty:

.<: ® Scenario WPIC1
: ‘ Scenario WPIC2

T T +
INVESTMENT 1 INVESTMENT 2 MARKET CLEARING 2
MARKET CLEARING 1

Antonio J. Conejo
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2. Problem description

v' Demand/wind + Investment cost uncertainty:

1 1
Scenario DW1

Scenario DW2

1

| Scenario DW3

i

' ' Scenario DW4

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

INVESTMENT 1 INVESTMENT 2 MARKET CLEARING 2 +

. MARKET CLEARING 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1 1

1 1

' ’ Scenario WPIC1
:

1 1

: ‘ Scenario WPIC2
1

i i |

1 1 1

1 1 1

1 1 1

1 1 1 —

1 1 1

INVESTMENT 1 INVESTMENT 2 MARKET CLEARING 2

MARKET CLEARING 1 . )
January 7, 2015 Antonio J. Conejo



2. Problem description

v' Demand/wind + Investment cost uncertainty:

Scenario WPIC1+DW1

Scenario WPIC1+DW?2

Scenario WPIC1+DW3

Scenario WPIC1+DW4

Scenario WPIC2+DW1

Scenario WPIC2+DW?2

Scenario WPIC2+DW3

Scenario WPIC2+DW4

1 1 1

- INVESTMENT 1 INVESTMENT 2 MARKET CLEARING 2
MARKET CLEARING 1

January 7, 2015 Antonio J. Conejo
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2. Problem description
Additional sources of uncertainty:
v’ Fuel prices

v' Equipment outages

v' Other market agents investments

16



2. Problem description

v’ Decision sequence:
1) At the beginning of 1%t period: investment decisions (here-and-now)
2) Market clearing for each scenario realization, 1% period (wait-and-see)
3) Investment decisions for 2" period (wait-and-see & here-and-know)

4) Market clearing for each scenario realization, 25 period (wait-and-see)



3. Model formulation

Minimize .y (J{zt,.. . an} U{AL,. .. A7, .. un)
fla,at, oo™ A At )
subject to:
ho(z,at, o oa™ AL N et w) =0
g(a:,a:l,...,x”,Al,...,A”,,ul,...,un) <0

( Minimize, f1 (z,2%,...,2") Minimize ry {at,.. . en} UL, An )
subject to f(aj,xl,...,:L‘”,/\l,...,)\”,ul,...,u”)
< h! (az,azl, ..,x”) :O()\l) subject to:
gt (2t am) <0 (ph) rl: ho(e, ot oo™ X At ™) =0
g(:U,:Ul,...,x",)\l,...,kn,,u ey )§0
( Minimize,: f*(z,z%,...,2") Vm’l{jf (xvxa“‘?xn)jL)‘z Va hl(? o)+
) subject to: | 3 Vg (z,2, . .,2") =0, z:l )
W (x,at, o a™) =0 (X h ( ") =0, i=1,...,n
L g (2,2t . 2™) <0 (). 0<p' L—g"(z,at,...,2") <0, i=1,...,n
( Minimize,n f" (a:, zt . :E")
subject to:
< h”(w,xl,...,x”):()()\”)
[ 9" (@2, a") <0 (un)

January 7, 2015 Antonio J. Conejo 18



3. Model formulation

UPPER LEVEL

Maximize Expected Profit—[3 X Risk Profit Measure

INVESTMENT LMPs
DECISIONS
LOWER LEVEL
Maximize SW
MARKET MARKET .e MARKET
CLEARING 1 CLEARING 2 CLEARING N
N \ /

January 7, 2015

\

Antonio J. Conejo
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Maximize

subject to

3. Model formulation

UPPER LEVEL PROBLEM

[Expected Profit — 3 X Risk Profit Measure ]

/ Investment constraints \
Wind power availability
Price = LMP

CVaR constraints

K Non-anticipativity constraintS/

Antonio J. Conejo
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3. Model formulation

LOWER LEVEL PROBLEMS

Maximize [SWl ]

subject to

1 lower-level
problem per
scenario, period
and demand/wind
condition!

ﬁower Balance
Power Production Limits

Transmission Capacity Limits

Qngle Limits

/

Antonio J. Conejo

- A:LMP
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3. Model formulation

Upper-level & lower-level
have to be solved jointly

Bilevel problem:

X Two levels
X Non linear

January 7, 2015

-

—

MPEC problem:

v’ Single level
X Non linear

KKT conditions

lower-level problems

Antonio J. Conejo

-

MILP problem:

v’ Single level
v Linear

22
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3. Model formulation

Problem structure:

-

~

-

-

Benders decomposition

o

o

Antonio J. Conejo
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4. Case studies

3-bus system:

el @ Line 1

Line 2 Line 3

. _ Bus 3
= Two five-years periods @

G3 L3

January 7, 2015 Antonio J. Conejo
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4. Case studies
3-bus system: Just investment cost uncertainty

v'Investment cost known in period 1

v'3 investment cost scenario realizations in period 2:
high (H), medium (M) and low (L)

v'Risk-neutral (3=0) and risk-averse (B=1) solutions

25



4. Case studies

Results

3-bus system: investment cost uncertainty

Scenario Risk-neutral Risk-averse
Period 1 Period 2 Period 1 Period 2
H 0 0
M 114.3 MW 39.0 MW 153.3 MW 0

L 185.7 MW 146.7 MW

January 7, 2015 Antonio J. Conejo
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4. Case studies
3-bus system: Just wind/demand uncertainty

v'3 wind/demand scenario realizations in period 1: H,
M and L

v'3 wind/demand scenario realizations in period 2 for
each scenario realization in period 1: H, M and L

v'Risk-neutral (3=0) and risk-averse (B=1) solutions

27



4. Case studies

Results

3-bus system: wind/demand uncertainty

Scenario Risk-neutral Risk-averse
Period 1 Period 2 Period 1 Period 2
HHHI:M’ 108.3 MW 108.3 MW
152.3 MW 60.7 MW
VIR, MM, 0.8 MW 92.3 MW
ML
LH, LM, LL 0 0

January 7, 2015 Antonio J. Conejo
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4. Case studies

3-bus system: investment cost and wind/demand
uncertainty
v’ Investment cost know for period 1

v'Two scenario realizations of investment cost in period
2: M, L

v'2 wind/demand scenario realizations in period 1: H, L

v'2 wind/demand scenario realizations in period 2 for
each scenario realization in period 1: H, L

v'Risk-neutral (3=0) and risk-averse (B=1) solutions

Antonio J. Conejo
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4. Case studies

Results -- 3-bus system: investment cost and
wind/demand uncertainty

Investment Demand
cost /wind
scenario  scenario

Risk-neutral Risk-averse
Period 1 Period 2 Period 1 Period 2

M HH, HL 198.8 MW 136.0 MW

M LH, LL 92.4 MW 78.7 MW
67.2 MW 130.0 MW

L HH, HL 232.8 MW 170.0 MW

L LH, LL 232.8 MW 170.0 MW

January 7, 2015 Antonio J. Conejo
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3-bus system: Investment cost and wind/demand

Expected Profit ($)

SN R R

o~ o DO o

4. Case studies

uncertainty (efficient frontier)

x 10°
_%}z- 1 B=0.2 (c) Case 3
E} B=1
! P |
- O
B=2
15 16 1.7 18 19 2 71

CVvaR {S:J X 1[]5

Antonio J. Conejo

31



4. Case studies

IEEE 118-bus system:

v 3 five-year periods
v'32 wind/demand and investment costs scenarios
v’ Two potential locations of wind plants

v'Risk-neutral (3=0) and risk-averse (B=1) solutions



4. Case studies

IEEE 118-bus system: results

v Different risk-aversion levels result in different investment
strategies

v'Computational issues:
v'Intractable if MILP is solved directly

v'Using Benders: around 20 h on a Linux-based server with four processors
clocking at 2.9 GHz and 250 GB of RAM (compatible with time
requirements in investment studies)

January 7, 2015 Antonio J. Conejo 33



5. Conclusions

1. A risk-constrained multi-stage modeling is a must
for deciding wind investment

2. Tractable model for systems of realistic size

3. Different risk-aversion levels: different investment
strategies
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