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variables z, pi, c1, s1;
equations of, price, cost;
of .. z =e= -pi*s1 + c1;
price .. pi =e= 100 - 0.005*(s1+2400);
cost .. c1 =e= 30000 + 40*(200+s1);
model producer1 including /all/;
solve producer1 using nlp minimizing z;
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LOWER     LEVEL     UPPER    MARGINAL

---- EQU of              .         .         .        1.000      
---- EQU price         88.000    88.000    88.000 -4800.000      
---- EQU cost       38000.000 38000.000 38000.000     1.000      

LOWER     LEVEL     UPPER    MARGINAL

---- VAR z              -INF  -7.720E+4     +INF       .         
---- VAR pi             -INF     64.000     +INF       .         
---- VAR c1             -INF  2.3000E+5     +INF       .         
---- VAR s1             -INF   4800.000     +INF       EPS 
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variable pz;
positive variables x1, x2, x3;

equations
op, pg, pe, pl;

op.. 10*x1 +  4*x2 + 24*x3 =e=  pz;
pg..  1*x1 +  2*x2 +  1*x3 =g=  60;
pe..  6*x1 +  1*x2 +  2*x3 =e=  50;
pl.. 20*x1 + 14*x2 +  1*x3 =l= 400;

model three /all/;
solve three using lp minimizing pz;
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variable pz;
positive variables x1, x2, x3;

equations
op, pg, pe, pl;

op..  10*x1 +  4*x2 + 24*x3 =e=   pz;
pg..   1*x1 +  2*x2 +  1*x3 =g=   60;
pe..   6*x1 +  1*x2 +  2*x3 =e=   50;
pl.. -20*x1 - 14*x2 - 1*x3 =g= -400;

model three /all/;
solve three using lp minimizing pz;
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variables dz, y2;
positive variable y1;
negative variable y3;

equations
od, d1, d2, d3;

od.. 60*y1 + 50*y2 + 400*y3 =e= dz;
d1..  1*y1 +  6*y2 +  20*y3 =l= 10;
d2..  2*y1 +  1*y2 +  14*y3 =l=  4;
d3..  1*y1 +  2*y2 +   1*y3 =l= 24;

model dthree /all/;
solve dthree using lp maximizing dz;
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variables dz, y2;
positive variable y1, y3;

equations
od, d1, d2, d3;

od.. 60*y1 + 50*y2 - 400*y3 =e= dz;
d1..  1*y1 +  6*y2 - 20*y3 =l= 10;
d2..  2*y1 +  1*y2 - 14*y3 =l=  4;
d3..  1*y1 +  2*y2 - 1*y3 =l= 24;

model dthree /all/;
solve dthree using lp maximizing dz;
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variable z;
positive variables x1, x2, x3;
variables y2;
positive variable y1;
negative variable y3;
equation of;
equations pg, pe, pl;
equations d1, d2, d3;
equation sde;
of.. z =e= x1+x2;
pg..  1*x1 +  2*x2 +  1*x3 =g=  60;
pe..  6*x1 +  1*x2 +  2*x3 =e=  50;
pl.. 20*x1 + 14*x2 +  1*x3 =l= 400;
d1..  1*y1 +  6*y2 +  20*y3 =l= 10;
d2..  2*y1 +  1*y2 +  14*y3 =l=  4;
d3..  1*y1 +  2*y2 +   1*y3 =l= 24;
sde .. 10*x1 +  4*x2 + 24*x3 =e= 60*y1 + 50*y2 + 400*y3;
model pdthree /all/;
solve pdthree using lp maximizing z;
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variables zp, x11, x12, x13, x21, x22, x23;
positive variables x11, x12, x13, x21, x22, x23;
equations of, supply1, supply2, demand1, demand2, demand3;

of .. zp =e= 0.225*x11 + 0.153*x12 + 0.162*x13 +
0.225*x21 + 0.162*x22 + 0.126*x23;

supply1 .. x11 + x12 + x13 =l= 350;
supply2 .. x21 + x22 + x23 =l= 600;

demand1 .. x11 + x21 =g= 325;
demand2 .. x12 + x22 =g= 300;
demand3 .. x13 + x23 =g= 275;

model Ptransport /all/;
solve Ptransport using lp minimizing zp;
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variables zd, u1, u2, v1, v2, v3;
negative variables u1, u2;
positive variables v1, v2, v3;
equation of, d1, d2, d3, d4, d5, d6;
of .. zd =e= 350*u1 + 600*u2 + 325*v1 + 300*v2 + 
275*v3;
d1 .. u1 + v1 =l= 0.225;
d2 .. u1 + v2 =l= 0.153;
d3 .. u1 + v3 =l= 0.162;
d4 .. u2 + v1 =l= 0.225;
d5 .. u2 + v2 =l= 0.162;
d6 .. u2 + v3 =l= 0.126;
model Dtransport /all/;
solve Dtransport using lp maximizing zd;
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variable z;
positive variables x11, x12, x13, x21, x22, x23;
negative variables u1, u2;
positive variables v1, v2, v3;
equation of, sde;
equations supply1, supply2, demand1, demand2, demand3;
equations d1, d2, d3, d4, d5, d6;
of .. z =e= x11;
sde .. 0.225*x11 + 0.153*x12 + 0.162*x13 +

0.225*x21 + 0.162*x22 + 0.126*x23
=e= 350*u1 + 600*u2 + 325*v1 + 300*v2 + 275*v3;

supply1 .. x11 + x12 + x13 =l= 350;
supply2 .. x21 + x22 + x23 =l= 600;
demand1 .. x11 + x21 =g= 325;
demand2 .. x12 + x22 =g= 300;
demand3 .. x13 + x23 =g= 275;
d1 .. u1 + v1 =l= 0.225;
d2 .. u1 + v2 =l= 0.153;
d3 .. u1 + v3 =l= 0.162;
d4 .. u2 + v1 =l= 0.225;
d5 .. u2 + v2 =l= 0.162;
d6 .. u2 + v3 =l= 0.126;
model PDtransport /all/;
solve PDtransport using lp maximizing z;
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positive variables x1, x2, x3;
positive variables m1, m2;
variable l
equations
e, i1, i2, r1, r2, r3;
e  .. 6*x1 + x2 + 2*x3 =e= 50;
i1 .. 400 - 20*x1 - 14*x2 - x3 =g= 0;
i2 .. -60 +    x1 +  2*x2 + x3 =g= 0;
r1 .. 10 + 20*m1 - m2 - 6*l =e= 0;
r2 ..  4 + 14*m1 - 2*m2 - l =e= 0;
r3 .. 24 +    m1 - m2 - 2*l =e= 0;
model MCPsimple
/
e.l,
i1.m1, i2.m2,
r1.x1, r2.x2, r3.x3
/;
solve MCPsimple using mcp;
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positive variables x11, x12, x13, x21, x22, x23;
positive variables u1, u2, v1, v2, v3;
equations supply1, supply2, demand1, demand2, 
demand3,

rat1, rat2, rat3, rat4, rat5, rat6;
supply1 .. 350 =g= x11 + x12 + x13;
supply2 .. 600 =g= x21 + x22 + x23;
demand1 .. x11 + x21 =g= 325;
demand2 .. x12 + x22 =g= 300;
demand3 .. x13 + x23 =g= 275;
rat1 .. u1 + 0.225 =g= v1;
rat2 .. u1 + 0.153 =g= v2;
rat3 .. u1 + 0.162 =g= v3;
rat4 .. u2 + 0.225 =g= v1;
rat5 .. u2 + 0.162 =g= v2;
rat6 .. u2 + 0.126 =g= v3;
model MCPtransport
/
supply1.u1, supply2.u2,
demand1.v1, demand2.v2, demand3.v3,
rat1.x11, rat2.x12, rat3.x13, rat4.x21, rat5.x22, 
rat6.x23
/;
solve MCPtransport using mcp;
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MPEC example: equality and inequality constraints
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MPEC example: equality and inequality constraints
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Reading

• C. Ruiz, A. J. Conejo, “Pool Strategy of a Producer with Endogenous
Formation of Locational Marginal Prices”. IEEE Transactions on
Power Systems. Vol. 24, No. 4, pp. 1855- 1866, November 2009.
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Modeling Framework
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Upper-Level OF

Lower-Level OF

Upper-Level Constraints

Lower-Level 
Problem

Upper-Level 
Problem

Lower-Level Constraints

• Bilevel Problem



Modeling Framework
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Lower-Level 
Problem

Upper-Level 
Problem

• Bilevel Problem



Modeling Framework
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Lower-Level 
Problem

Upper-Level 
Problem

• Bilevel Problem



Modeling Framework
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Lower-Level 
Problem

Upper-Level 
Problem

• Bilevel Problem



Modeling Framework
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Linear
Lower-Level 

Problem

Upper-Level 
Problem

• Bilevel Problem → Linear Lower-Level Problem Clearing 
auctions 

are 
generally 
linear and 
continuous 
in Europe, 
not in the 

US



Modeling Framework
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Single-Level 
Problem

Lower-Level
Optimallity 
Condicions

• Bilevel Problem → MPEC Problem 



Modeling Framework
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• MPEC Problem → Lower-Level Optimality Conditions 

KKT Conditions

Complementarity Condition

Nonconvex!



Modeling Framework
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Primal-Dual Formulation

Strong Duality Equality

Primal  
Constraints

Dual  
Constraints

No complementarity 
conditions!

• MPEC Problem → Lower-Level Optimality Conditions 



Modeling Framework
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Primal-Dual FormulationKKT Conditions

• MPEC Problem → Lower-Level Optimality Conditions 



Modeling Framework
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• MPEC Problem → Formulations

Strategic Offering in a Pool

KKT conditions LL Primal-Dual formulation LL 



Strategic Offering in a Pool
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• Introduction

Strategic Power Producer

o Owns several generating units

o Units distributed throughout 
the power network

o Competitive (non-strategic) 
rival units



Strategic Offering in a Pool
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• Introduction

Pool-based Electricity 
Market

o Maximizes the social welfare

o Cleared once a day, one day 
ahead and on a hourly basis

o DC network (first and second 
Kirchhoff laws)

o Hourly LMPs

Market Clearing
Procedure

Producers’ offer
curves

Demands’ bid
curves

Market 
Prices (LMP)

Dispatched
Energy

Quantities



Strategic Offering in a Pool
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• Introduction

Best offering strategy 
to maximize profit?

Strategic Power Producer

Pool-based Electricity  Market

Market 
Outcomes



Strategic Offering in a Pool
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• Approach → Stackelberg Game

Strategic Power Producer

Pool-based Electricity  Market

Market 
Outcomes

Leader

Follower



Strategic Offering in a Pool
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• Approach → Stackelberg Game → Bilevel Model

Profit Maximization

Social Welfare Maximization
(Market Clearing)

LMPs
Market 

Outcomes

Lower-Level 
Problem

Upper-Level 
Problem Offering 

curve

subject to



Strategic Offering in a Pool

January 7, 2015 A. J. Conejo 19

• Approach → Stackelberg Game → Bilevel Model → MPEC Model

Profit Maximization

KKT Conditions

LMPs
Market 

OutcomesSingle-Level
Problem

Offering 
curve

subject to



Strategic Offering in a Pool
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• Model Features

o Strategic offering for a producer in a pool anticipating
(with endogenous formation of) LMPs.

o Stepwise offer curves.

o Uncertainty of demand bids and rival production offers.

o MPEC approach under multi-period, network-constrained
pool clearing.

o MPEC transformed into an equivalent MILP problem.



Strategic Offering in a Pool
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• Deterministic Model  → Bilevel Model  

Upper-Level
Problem

Costs - Revenues

Increasing Offer Curves

Ramp Limits
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• Deterministic Model  → Bilevel Model  

Upper-Level
Problem



Strategic Offering in a Pool
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• Deterministic Model  → Bilevel Model  

Lower-Level
Problem

– Social Welfare

Power Balance per Bus

Production / Demand Power Limits

Transmission Capacity Limits

Angle Limits
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• Deterministic Model  → Bilevel Model  

Lower-Level
Problem



Strategic Offering in a Pool
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• Deterministic Model  → KKTs Lower-Level Problem

Lower-Level
Problem

Complementarity 
Conditions
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• Deterministic Model  → MPEC Model

Single-Level
Problem

KKTs Lower-Level Problem

Nonlinear!



and            are large enough constants (but not too large).

Strategic Offering in a Pool

January 7, 2015 A. J. Conejo 27

• Deterministic Model  → MPEC Model→ Linearizations

Fortuny-Amat
Transformation

Easy to select

Not that easy! 
(trial and error)Alternative:

SOS1
variables



1. Use the strong duality equality to express the 
nonlinear term (part of the primal objective 
function ) 

as a function of other linear terms 

2. Linearize the other terms using some KKT 
conditions

Strategic Offering in a Pool

January 7, 2015 A. J. Conejo 28

• Deterministic Model  → MPEC Model→ Linearizations



Strategic Offering in a Pool
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• Deterministic Model  → MPEC Model→ Linearizations

Based on the strong duality 
theorem and some of the KKT 

equalities

Exact!
No approximation
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• Deterministic Model  → MPEC Model→ MILP problem

Bilevel 
Model

MPEC
Model

MILP
Problem

Direct solution: 
CPLEX, XPRESS, 
GUROBI
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• Stochastic Model

o Consumers’ bids

o Rival producers’ offers

Uncertainty incorporated by using a set of 
scenarios modeling different realizations of:

Robust Optimization fits naturally here!
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• Stochastic Model

Pairs of production quantity (        ) and 
market price (        ).

Deterministic model for each scenario

Building of the optimal offering curve



Strategic Offering in a Pool

January 7, 2015 A. J. Conejo 33

• Stochastic Model

MPEC

Scenario 1

MPEC

Scenario 2

MPEC

Scenario 

MPEC

Scenario 

Production

Price
Optimal 

offering curve

hour t
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• Stochastic Model

o To ensure that the final offering curves are increasing in price some 
additional constraints are needed.

o These constraints link the individual problems increasing the 
computational complexity of the model.



Robust Optimization

How to build offering curve in a robust optimization framework?

January 7, 2015 A. J. Conejo 35



Strategic Offering in a Pool
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• Stochastic Model



Strategic Offering in a Pool
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• Stochastic Model

o Direct solution: CPLEX, XPRESS, 
GUROBI

o Decomposition procedures 
(Lagrangian Decomposition)



Strategic Offering in a Pool
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• Stochastic Model

Intractability is an issue:

A robust model may be advantageous



Strategic Offering in a Pool
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• Illustrative Example



Strategic Offering in a Pool
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• Illustrative Example → Data 
Demand data (per unit)

24 hours

5 blocks



Strategic Offering in a Pool

January 7, 2015 A. J. Conejo 41

• Illustrative Example → Data

Generating units type and data



Strategic Offering in a Pool
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• Illustrative Example → Data

Generating units location Demand location



Strategic Offering in a Pool
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• Illustrative Example → Uncongested Network Results

Strategic units Non-strategic units 

Huge differences due to small size example
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• Illustrative Example → Uncongested Network Results

Marginal-cost competitive offer price= 11.72 €/MWh   for all time periods
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• Illustrative Example → Congested Network Results

Capacity of line 3-6 limited to 230 MW (slightly above):

No 
congestion 
expected
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• Illustrative Example → Congested Network Results

Strategic units 

Non-strategic units 

Capacity of line 3-6 limited to 230 MW:

Uncong. case

Uncong. case

The strategic 
producer 

reacts 
congesting 

the network
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• Illustrative Example → Congested Network Results

Capacity of line 3-6 limited to 230 MW:



Strategic Offering in a Pool
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• Illustrative Example → Congested Network Results

Capacity of line 4-6 limited to 39 MW (slightly below):

Strategic units 

No congestion!
Uncong. case

Congestion 
expected



Strategic Offering in a Pool
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• Illustrative Example → Stochastic Model

o Uncongested network case

o 8 equally probable scenarios

o They differ on the rival producer offers (       ) and 
on the consumer bids (       )

o Selected to obtain a wide range of prices
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• Illustrative Example → Stochastic Model Results

Strategic units 
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• Illustrative Example → Stochastic Model Results

Offering curves for strategic unit 1

t=5

t=9

t=10

t=13

Hourly 
offering 
curves!
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• Case Study

IEEE One Area Reliability Test System

o 24 Nodes

o 7 strategic units

o 11 non-strategic units

o 17 consumers

o 24 hours
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• Case Study → Results 

Strategic units 



Strategic Offering in a Pool
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• Case Study → Results 

Non-strategic units 
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• Case Study → Results 

Marginal cost offer Strategic Offer

No congestion 
(not profitable)



Strategic Offering in a Pool

January 7, 2015 A. J. Conejo 56

• Case Study → Computational Issues 

Model solved using CPLEX 12.0.1 under GAMS on a Sun Fire X4600 M2 with 8 
Quad-Core processors at 2.90 GHz and 256 GB of RAM.

↑ Size of the problem
↑ Line congestion
↑ Scenarios



Conclusions
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• Procedure to derive strategic offers for a power producer in a network
constrained pool market.

– LMPs are endogenously generated: MPEC approach.

– Uncertainty is taken into account.

– Resulting MILP problem.

• Exercising market power results in higher profit and lower production.

• Network congestion can be used to further increase profit.



Robust optimization is a natural option to
model uncertainty parameters in this
problem:

• Rival producer offering behavior

• Demand bidding behavior

January 7, 2015 A. J. Conejo 58

Future work
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Background

• Comparatively high consumption level

• It owns a large number of loads

• Loads may be distributed throughout the network

January 7, 2015 3

Large Consumer

A. J. Conejo



Background

Characteristics:

• Market power in the demand side

• A fraction of its loads is elastic enough to play strategically

• It is able to anticipate the behavior of other players  

January 7, 2015 4

Strategic Large Consumer

A. J. Conejo



Background

Aim:

• To manipulate the market prices to its own benefit

January 7, 2015 5

Strategic Large Consumer

A. J. Conejo



Background and Aim

• Cleared once a day, one day ahead and on a hourly basis

• DC representation of the network including first and second 
Kirchhoff laws

• Locational Marginal Prices (LMPs)

January 7, 2015 6

Pool-based electricity market

A. J. Conejo



Motivation

January 7, 2015 7

Market clearing price
$30/MWh

Utility of Large Consumer:
[50 MW ×(70-30) $/MWh] + [10 MW ×(35-30) $/MWh]
= $2050

A. J. Conejo



Motivation

January 7, 2015 8

Market clearing price
$30/MWh

Market clearing price
$15/MWh

Utility of Large Consumer:
[50 MW ×(70-15) $/MWh] 

+ [5 MW ×(35-15) $/MWh]
= $2850

Utility = $2050
A. J. Conejo



 To derive the strategic bidding curve for a large 
consumer

 Challenge: diverse sources of uncertainty
• Offer price of generators
• Bid price of other consumers
• Other uncertainties

 Approach: Stochastic complementarity model

Motivation

January 7, 2015 A. J. Conejo 9



Approach

January 7, 2015 10

Pool-based electricity market

Strategic large consumer

Best bidding strategy to 
maximize utility

One market clearing problem per scenario!

A. J. Conejo



Approach

January 7, 2015 11

Pool-based electricity market

Strategic large consumer

Best bidding strategy to 
maximize utility

Multiple market clearing problems (stochastic)!

Scenario-independent 
bidding decisions

(a single bidding curve)!

A. J. Conejo



Approach

January 7, 2015 12

Two alternatives:

1) Scenario-independent bidding decisions

(Computationally expensive)

2) Scenario-dependent bidding decisions

• To enforce that the bidding curve is decreasing in price

• To derive the scenario-independent bidding curve using an ex-post analysis

A. J. Conejo



Approach

January 7, 2015 13

Social Welfare Maximization
(market clearing one per scenario)

Utility MaximizationUpper-Level

Lower-Level

Bilevel model:

subject  to
Bidding
curve

• Consumption quantities
• LMPs (dual variables) 

Convex problems
A. J. Conejo



Approach

January 7, 2015 14

KKT Conditions

Utility MaximizationUpper-Level

Lower-Level

MPEC:

subject  to
Bidding
curve

• Consumption quantities
• LMPs (dual variables) 

A. J. Conejo
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Upper-Level → Utility Maximization:

Maximize expected utility

Load pick-up and drop ramping limits

Approach

Bidding curve blocks:
• Non-negative
• Lower than the bid price cap
• Decreasing in price

Minimum energy requirement over the time horizon 

A. J. Conejo
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Lower-Level → Market Clearing

Maximize Social Welfare

Power Balance

Quantities and prices 

Approach

A. J. Conejo
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Production / Demand Power Limits

Transmission Capacity Limits

Angle Limits

Lower-Level → Market Clearing

Approach

A. J. Conejo
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MPEC→ Single-level Optimization Problem

Approach

Condition enforcing the decreasing shape 
of the bidding curve (linking constraint)

A. J. Conejo
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MPEC→ Single-level Optimization Problem

Approach

A. J. Conejo
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Heuristic Solution (coordinate descent algorithm*)

Approach

MPEC for
scenario N

MPEC for
scenario N-1

1. To solve MPECs, one per scenario, individually (without enforcing linking condition)
2. To order MPECs from the highest to lowest average LMP

*D. G. Luenberger, Introduction to linear and nonlinear programming. New York, NY, USA: Addison-Wesley, 1973.

Lowest avg. LMP

MPEC for
scenario 1

Highest avg. LMP

A. J. Conejo
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Non-linear mathematical programming problem

Mixed-integer Linear
mathematical programming problem

Each MPEC problem:

Approach

C. Ruiz and A. J. Conejo, “Pool strategy of a producer with endogenous formation of locational marginal
prices,” IEEE Trans. Power Syst., vol. 24, no. 4, pp. 1855–1866, Nov. 2009.

January 7, 2015 A. J. Conejo



Example

22

D3

D2D1Q1 Q2

 Large consumer  D1, D2 and D3 (42% of peak demand)
 Three time periods
 Minimum energy requirement  70% of total load over the time horizon
 10 scenarios (offering uncertainty of the producers)

Data:
D1, D2 and D3  Large consumer
Q1 and Q2  Other consumers

January 7, 2015 A. J. Conejo



Example

23

Results:

Case Non-strategic 
Bidding 

Strategic 
Bidding 

Total expected 
Utility [$]

5958 6695

Expected unserved
energy for the large 
consumer [MWh]

8.6 65.5

Market price
(for a particular scenario)

[$/MWh]

23.52 (t1)
19.08 (t2)
16.02 (t3)

22.26 (t1)
18.00 (t2)
13.72 (t3)

January 7, 2015 A. J. Conejo



Example

24

Bidding curve for demand D3 in peak hour t1:

Sce. 1 Sce. 2 Sce. 3 Sce. 4 Sce. 5 Sce. 6 Sce. 7 Sce. 8 Sce. 9 Sce. 10

LMP
[$/MWh]

16.80 17.49 19.08 20.67 22.26 22.50 17.49 19.08 20.67 22.50

Block 1
[MW]

40.0 40.0 40.0 40.0 40.0 28.3 40.0 40.0 40.0 28.3

Block 2
[MW]

10.0 5.0 5.0 5.0 5.0 0 5.0 5.0 5.0 0

Block 3
[MW]

15.0 0 0 0 0 0 0 0 0 0

Block 1:
 28.3 MW is supplied across all scenarios  22.50 ≤ bid price ≤ cap

January 7, 2015 A. J. Conejo



Example

25

Bidding curve for demand D3 in peak hour t1:

Sce. 1 Sce. 2 Sce. 3 Sce. 4 Sce. 5 Sce. 6 Sce. 7 Sce. 8 Sce. 9 Sce. 10

LMP
[$/MWh]

16.80 17.49 19.08 20.67 22.26 22.50 17.49 19.08 20.67 22.50

Block 1
[MW]

40.0 40.0 40.0 40.0 40.0 28.3 40.0 40.0 40.0 28.3

Block 2
[MW]

10.0 5.0 5.0 5.0 5.0 0 5.0 5.0 5.0 0

Block 3
[MW]

15.0 0 0 0 0 0 0 0 0 0

Block 1:
 28.3 MW is supplied across all scenarios  22.50 ≤ bid price ≤ cap
 11.7 MW (40 – 28.3) is supplied in scenarios 1-5 and 7-9

 bid price = 22.26
January 7, 2015 A. J. Conejo



Example
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Scenario-independent bidding curve for demand D3 in peak hour t1:

January 7, 2015 A. J. Conejo



Large-scale case study

27

Data:
 One-area 24-node IEEE RTS system
 24 time periods
 Large consumer  36% of peak demand
 Minimum energy requirement  70% of total load over the time horizon
 50 scenarios (offering uncertainty of the producers)

Results:
 The total expected utility increases 6.7% in the strategic bidding case 

with respect to non-strategic bidding case.

January 7, 2015 A. J. Conejo



Large-scale case study

28

LMP in a particular node with and without strategic bidding:

Hour

LM
P

 
($

/M
W

h
)

January 7, 2015 A. J. Conejo



Conclusions

• To derive the strategic bidding curve for a large consumer in a network-
constrained pool
• LMPs are endogenously generated

• Uncertainty is taken into account

• Resulting MILP problem

• Strategic behavior results in higher utility and lower LMPs

January 7, 2015 29A. J. Conejo
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Nice 
overview

Real-world modeling 
emphasized 
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Main two issues

• Uncertainty: stochastic modeling

• Market: complementarity modeling

January 7, 2015 A. J. Conejo 4



Main two issues

• A minimum-cost approach does not fit 
within a market environment!

January 7, 2015 A. J. Conejo 5



Introduction

• Static vs. dynamic (multi-stage) modeling

• Dynamic: better description of the actual decision-
making process. Multiple decision points.

• Static: appropriate tradeoff between accuracy and
computational complexity. Only the final year of the
planning horizon is considered (all monetary figures
should be referred to that year).

January 7, 2015 A. J. Conejo 6



Introduction

We assume perfect foresight on the cost of money, 
which is nowadays a strong assumption

January 7, 2015 A. J. Conejo 7



Introduction. Model features

• Static vs. dynamic (multi-stage) modeling: static

• Uncertainty! Scenario modeling: 

 Load level

 Consumer bids

 Rival producer behavior (offering and investment)

January 7, 2015 A. J. Conejo 8



Introduction. Imperfect foresight

Investment 
Tool

• Demand data

• Generation unit data 

• Rival data

: combinatorial explosion!Imperfect 
foresight

January 7, 2015 A. J. Conejo 9

Generation 
units to 

build



Introduction. Generation investment

 Strategic producer

 Rival competitive producers (otherwise we need an 
equilibrium model)

 Uncertainty: multi-scenario!

 Bilevel  Stochastic MPEC MILP

 Solution: B&C

January 7, 2015 A. J. Conejo 10



Background and aim

• Comparatively large number of generating units

• Units distributed throughout the power network

Strategic power producer

January 7, 2015 A. J. Conejo 11



Background and aim

• Cleared once a day, one day ahead and on a 
hourly basis

• DC representation of the network including first 
and second Kirchhoff laws

• Hourly Locational Marginal Prices (LMPs)

• No futures markets

Pool-based electricity market

January 7, 2015 A. J. Conejo 12



Background and aim

Pool-based electricity market

Strategic power producer

Best investment options and 
Best offering strategy to 
maximize profit

January 7, 2015 A. J. Conejo 13



Background and aim

January 7, 2015 A. J. Conejo 14

Scenarios 
per 

demand 
block



Approach

Social Welfare Maximization
(Market Clearing)

Profit MaximizationUpper-Level

Lower-Level

Bilevel model:

subject  to LMPs

Offering 
curve

Dual Variables

Investments

January 7, 2015 A. J. Conejo 15



Approach

Profit MaximizationUpper-Level

MPEC:

LMPs

KKT Conditions

Offering 
curve

subject  to

Investments

January 7, 2015 A. J. Conejo 16



Approach

1) Strategic investment and offering for a producer in a 
pool with endogenous formation of LMPs.

2) Uncertainty in demand, rival production offers and 
rival investments.

3) MPEC approach under network constrained pool 
clearing.

4) MPEC transformed into an equivalent MILP.

January 7, 2015 A. J. Conejo 17



Deterministic model

Upper-Level → Profit Maximization:

Costs - Revenues 

Investment options

Price = Balance dual variable
January 7, 2015 A. J. Conejo 18



Deterministic model

Lower-Level → Market Clearing

Maximize Social Welfare

Power Balance

Powers and prices 

January 7, 2015 A. J. Conejo 19



Deterministic model

Production / Demand Power Limits

Transmission Capacity Limits

Angle Limits

Lower-Level → Market Clearing

January 7, 2015 A. J. Conejo 20



Deterministic model

The MPEC includes the following non-linearities:

1) The complementarity conditions (                      ).

2) The term                    in the objective function.

Linearizations

00  ba

January 7, 2015 A. J. Conejo 21



Deterministic model

 1,0

)1(

0

0

00















u

Mub

uMa

b

a

ba

M Large enough constant (but not too large)

Linearizations → Complementarity Conditions

Fortuny-Amat 
transformation

January 7, 2015 A. J. Conejo 22

Using SOS1 
variables is 

an 
alternative



Deterministic model

Problem-dependent procedure

Linearizations → 

January 7, 2015 A. J. Conejo 23



Deterministic model

Mixed-Integer NONLINEAR mathematical 
programming problem

Mixed-Integer LINEAR
mathematical programming problem:

Tractable
Sufficiently well-conditioned
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Stochastic model

• Consumers’ bids  

• Rival producers’ offers

• Future demands

• Rival investments

Uncertainty incorporated by using a set of 
scenarios modeling different realizations of:
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Robust optimization

A robust optimization model fits here naturally. Uncertainty 
involves: 

• Consumers’ bids 

• Rival producers’ offers

• Future demands

• Rival investments
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Market scenarios
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Evaluate alternative 
investment plans
Evaluate alternative 

investment plans
Evaluate alternative 

investment plans
Evaluate alternative 

investment plans
Evaluate alternative 

investment plans
Evaluate alternative 

investment plansScenarios!Scenarios!Scenarios!Scenarios!Scenarios!Scenarios!Scenarios!Scenarios!Scenarios!Scenarios!Scenarios!Scenarios!Scenarios!



Stochastic model. Math structure
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Stochastic model. Math structure
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Decomposable!

Complicating 
variables



Stochastic model. Math structure

1. Direct solution: CPLEX, GUROBI

2. Decomposition procedures (Benders’ 
decomposition). This is a good idea since scenarios 
convexify!
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D. P. Bertsekas, and N. R. Sandell, “Estimates of the
duality gap for large-scale separable nonconvex
optimization problems,” 21st IEEE Conference on
Decision and Control, Miami Beach, Florida, pp. 782- 785,
Dec. 1982.



Formulation
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Subject to: 

Investment 
cost New unit 

profit

Existing unit 
profit



Formulation
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Subject to: 

Investment 
in discrete 

sizes

Minus social welfare



Formulation
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Energy 
balance per 

bus



Formulation

January 7, 2015 A. J. Conejo 34

Production 
bounds



Formulation
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Transmission 
line bounds

Demand 
bounds



Notation. Indices
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Notation. Constants
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Notation. Constants
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Notation. Variables
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Example

Generation prevails

Demand prevails

North-south
interconnected

tie-lines 

January 7, 2015 A. J. Conejo 40



Example: Investment options

Option
Base

technology

Peak 

technology

Investment

Cost (€/MW)
75000 15000

Capacity (MW) 0, 500, 750, 1000

0, 200, 250, 300, 350, 

400, 450, 500, 550, 600, 

650, 700, 750, 800, 850, 

900, 950, 1000

Cost: block 1

(€/MWh)
6.01 6.31

Cost: block 2

(€/MWh)
14.72 15.20
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Example: Investment results

Capacity of  tie-lines Uncongested 450 MW 150 MW

Base technology

(MW)
500 (north) 500 (south) 500 (south)

Peak technology

(MW)
200 (south) 200 (south) 600 (south)

Total investment 

(MW)
700 700 1100

Investment profit

(M€)
45.55 45.55 47.64
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Example: LMPs

Cases: uncongested

and 450 MW of 

transmission capacity

Congested case: 150 

MW of transmission 

capacity

LMPs in the south area are higher!
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Example: Stochastic case

Number of scenarios 1 4 12

Base technology

(MW)
500 (south) - 500 (north)

Peak technology

(MW)
200 (south)

350 (north)

350 (south)
200 (south)

Total investment 

(MW)
700 700 700

Investment profit

(M€)
45.55 32.25 31.38

Uncertainties:
• Rival investment
• Rival offering
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Example: IEEE one-area RTS

Number of scenarios One 4
12

(reduced version)

Base technology

(MW)
- - -

Peak technology

(MW)
750 (bus 15) 550 (bus 11) 450 (bus 23)

Total investment (MW) 750 550 450

Investment profit

(M€)
82.97 65.66 61.95

Optimality gap (%) 0.10 1.00 1.75

CPU time 12.14 (s) 3.95 (hours) 3.76 (hours)

The resulting model, although computationally expensive, is tractable!
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Conclusions

• Procedure to derive investments for a power
producer in a network constrained pool.

– LMPs are endogenously generated.

– Uncertainty is taken into account.

– MILP problem.

• Strategic behavior results in higher profit and lower
production.

• Network congestion can be used to further increase
profit.
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1. Motivation and approach

Wind power investor: seeks to determine
the wind power capacity to be built that
maximizes its expected profit and
minimizes the risk of profit volatility.

 Where to build?

 When to build?

 Which capacity to build?
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1. Motivation and approach

 Where to build?

 Nodes where construction is possible

 At nodes with the best wind power
conditions

 At nodes “well connected” to the system
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1. Motivation and approach

 When to build?

It depends on:

 Investment cost uncertainty

 Wind production & demand uncertainty
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1. Motivation and approach

 Which capacity to build?

It depends on:

 Wind production uncertainty

 Demand uncertainty

 Prices
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1. Motivation and approach

 How to solve this problem?

 Stochastic complementary model

 Multi-stage model

 Risk-constrained model
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2. Problem description

 Maximization of the wind investor profit

 Minimization of the risk of profit volatility

 Pool based electricity market:

 The wind producer offers at zero price (price taker!)

 The wind producer is paid the LMP of it node

 Given transmission capacity (dc model)
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2. Problem description
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 Time framework:

Investment 1 Investment 2 Investment T

Reference year

Period 1

Y1 Y2

…

…
YN Y1 Y2

…

…
YN Y1 Y2

…

…
YN

…

Period 2 Period T



2. Problem description

 Demand and wind production uncertainty
modeling:

1. K-means clustering technique:

Historical data set                            Reduced data set

January 7, 2015 Antonio J. Conejo 11



2. Problem description
 Demand and wind production uncertainty

modeling:

2. Scenario tree:

Scenario DW1

Scenario DW2

Scenario DW3

Scenario DW4

INVESTMENT 1 INVESTMENT 2

MARKET CLEARING 1

MARKET CLEARING 2
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2. Problem description

 Investment cost uncertainty:

INVESTMENT 1 INVESTMENT 2

MARKET CLEARING 1

MARKET CLEARING 2

Scenario WPIC1

Scenario WPIC2
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2. Problem description
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 Demand/wind + Investment cost uncertainty:

+INVESTMENT 1 INVESTMENT 2

MARKET CLEARING 1

MARKET CLEARING 2

Scenario DW1

Scenario DW2

Scenario DW3

Scenario DW4

INVESTMENT 1 INVESTMENT 2

MARKET CLEARING 1

MARKET CLEARING 2

Scenario WPIC1

Scenario WPIC2



2. Problem description
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 Demand/wind + Investment cost uncertainty:

Scenario WPIC1+DW1

Scenario WPIC1+DW2

INVESTMENT 1 INVESTMENT 2

MARKET CLEARING 1

MARKET CLEARING 2

Scenario WPIC1+DW3

Scenario WPIC1+DW4

Scenario WPIC2+DW1

Scenario WPIC2+DW2

Scenario WPIC2+DW3

Scenario WPIC2+DW4



2. Problem description

Additional sources of uncertainty:

 Fuel prices

 Equipment outages

 Other market agents investments
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2. Problem description

 Decision sequence:

1) At the beginning of 1st period: investment decisions (here-and-now)

2) Market clearing for each scenario realization, 1st period (wait-and-see)

3) Investment decisions for 2nd period (wait-and-see & here-and-know)

4) Market clearing for each scenario realization, 2st period (wait-and-see)
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3. Model formulation
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3. Model formulation
UPPER LEVEL

Maximize Expected Profit – β x Risk Profit Measure

LOWER LEVEL
Maximize  SW

MARKET 
CLEARING 1

MARKET 
CLEARING 2

MARKET 
CLEARING N

…

INVESTMENT 
DECISIONS

LMPs

Different scenarios, periods and 
wind/demand conditions!
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3. Model formulation
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Expected Profit – β x Risk Profit MeasureMaximize

subject to

UPPER LEVEL PROBLEM

Investment constraints

Wind power availability

Price = LMP

CVaR constraints

Non-anticipativity constraints



3. Model formulation
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LOWER LEVEL PROBLEMS

SW1

Power Balance 

Power Production Limits

Transmission Capacity Limits

Angle Limits

Maximize

subject to

1 lower-level 
problem per 
scenario, period 
and demand/wind 
condition!

LMP :



3. Model formulation
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Upper-level & lower-level
have to be solved jointly

KKT conditions 
lower-level problems

MPEC problem:

 Single level
Non linear

MILP problem:

 Single level
 Linear

Bilevel problem:

Two levels
Non linear



3. Model formulation
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Problem structure:

Benders decomposition



4. Case studies

3-bus system:

 Two five-years periods
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4. Case studies

3-bus system: Just investment cost uncertainty

Investment cost known in period 1

3 investment cost scenario realizations in period 2:
high (H), medium (M) and low (L)

Risk-neutral (β=0) and risk-averse (β=1) solutions
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4. Case studies

Scenario
Risk-neutral

Period 1          Period 2
Risk-averse

Period 1          Period 2

H

114.3 MW

0

153.3 MW

0

M 39.0 MW 0

L 185.7 MW 146.7 MW

Results

3-bus system: investment cost uncertainty
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4. Case studies

3-bus system: Just wind/demand uncertainty

3 wind/demand scenario realizations in period 1: H,
M and L

3 wind/demand scenario realizations in period 2 for
each scenario realization in period 1: H, M and L

Risk-neutral (β=0) and risk-averse (β=1) solutions

January 7, 2015 Antonio J. Conejo 27



4. Case studies

Results

3-bus system: wind/demand uncertainty

Scenario
Risk-neutral

Period 1          Period 2
Risk-averse

Period 1          Period 2

HH, HM, 
HL

152.3 MW

108.3 MW

60.7 MW

108.3 MW

MH, MM, 
ML

0.8 MW 92.3 MW

LH, LM, LL 0 0
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4. Case studies

3-bus system: investment cost and wind/demand 
uncertainty

Investment cost know for period 1

Two scenario realizations of investment cost in period
2: M, L

2 wind/demand scenario realizations in period 1: H, L

2 wind/demand scenario realizations in period 2 for
each scenario realization in period 1: H, L

Risk-neutral (β=0) and risk-averse (β=1) solutions
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4. Case studies
Results -- 3-bus system: investment cost and 

wind/demand uncertainty

Investment 
cost 

scenario

Demand
/wind

scenario

Risk-neutral
Period 1          Period 2

Risk-averse
Period 1          Period 2

M HH, HL

67.2 MW

198.8 MW

130.0 MW

136.0 MW

M LH, LL 92.4 MW 78.7 MW

L HH, HL 232.8 MW 170.0 MW

L LH, LL 232.8 MW 170.0 MW
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4. Case studies

3-bus system: Investment cost and wind/demand 
uncertainty (efficient frontier)

January 7, 2015 Antonio J. Conejo 31



4. Case studies

IEEE 118-bus system:

3 five-year periods

32 wind/demand and investment costs scenarios

Two potential locations of wind plants

Risk-neutral (β=0) and risk-averse (β=1) solutions
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4. Case studies

IEEE 118-bus system: results

Different risk-aversion levels result in different investment
strategies

Computational issues:

Intractable if MILP is solved directly

Using Benders: around 20 h on a Linux-based server with four processors
clocking at 2.9 GHz and 250 GB of RAM (compatible with time
requirements in investment studies)
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5. Conclusions

1. A risk-constrained multi-stage modeling is a must
for deciding wind investment

2. Tractable model for systems of realistic size

3. Different risk-aversion levels: different investment
strategies
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