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Introduction

Name that process (2)

Author's personal copy

7. Applying the model to follow wind time series

The paper now turns to using the models developed above to
control a population of loads. The focus in this case will be on fol-
lowing intermittent production from renewable electricity genera-
tors, however, the method can also in principle be applied to follow
fluctuations in electricity demand from other loads. The data for
this example come from 1-min actual wind power data, collected
by the National Renewable Energy Laboratory from a large wind
power plant near Lake Benton, Minnesota. The plant consists of
138 Zond Z50 turbines (rated 750 kW each) on 45 m towers.

The top panel of Fig. 8 shows 1 min power production over the
time span of one week. Without controlling loads to follow the out-
put, some form of conventional generation would be required to
increase or decrease production in response to the fluctuating out-

put of the wind generators. The bottom panel of Fig. 8 shows pro-
duction over a shorter period. The goal of the control method is to
use loads to follow higher-frequency fluctuations in wind power;
lower frequency fluctuations are assumed to be followed by other
forms of generation.

The reference output is constructed as follows: the 4 h moving
average, shown in the bottom panels, is first removed from total
production of the wind generators. The resulting zero-mean signal
is then added to a constant signal equal to the average demand
from the total population of loads subject to control, when
utn ! 0. Note that for this example external factors that would af-
fect demand from the load population, such as ambient tempera-
ture, are assumed constant. In practice, depending on the type of
load and how ambient conditions are changing, this assumption
would need to be relaxed. This will be the subject of future
research.

Fig. 6. Distribution of loads for 10,000 TCLs subject to Eq. (20) with parameters as specified in Table 1 except: In column b, the eigenvalue (defined as the eigenvalue for a
homogeneous system with parameters equal to the average of the heterogeneous system) is two times larger than the base case, and in column c, variance of the distribution
from which parameters are drawn is two times larger than the base case. h = 1 min.

Fig. 7. Linear model fit as function of the eigenvalue and heterogeneity, relative to
base case parameters defined in Table 1. The eigenvalue, defined as in the Fig. 6
caption, is varied by changing the average capacitance of the loads. h = 1 min.

Fig. 8. Example wind power output.

D.S. Callaway / Energy Conversion and Management 50 (2009) 1389–1400 1397

1 second wind production at 100 MW wind farm in MN (courtesy Yi Wei
Wan, NREL)
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Introduction

Name that process (3)
J.L. Mathieu et al. / Energy and Buildings 43 (2011) 3322–3330 3323
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Fig. 1. Actual and baseline-predicted demand for an office building on three different days during the summer of 2007. The left and middle plots show data from DR event
days  (the difference between the actual and the baseline prediction is a combination of the response to the DR signal and model error), while the right plot shows data from
a  normal day (the difference between the actual and the baseline prediction is model error).

1. Unmodeled load variability,  or baseline model error, is load vari-
ability that is not captured by a baseline model and not due to a
DR signal. Unmodeled load variability complicates DR programs
that use baselines for financial settlement (e.g., demand/capacity
bidding programs and programs in which loads participate in
wholesale ancillary services markets). Moreover, even DR pro-
grams that do not use baselines for settlement (e.g., dynamic
electricity pricing programs) use baselines for Measurement and
Verification (M&V) and to calculate the cost-effectiveness of the
DR programs [7].

2. Real DR variability is event-to-event variability in a facility’s
actual response, for example, due to building managers and/or
occupants overriding pre-programmed DR strategies; broken
equipment; and variability in responses as a function of occu-
pancy, weather, and other variables.

3. Observed DR variability occurs as a result of the combination of
unmodeled load variability and real DR variability.

Fig. 1 illustrates the concepts of baseline model error and
observed DR variability. In this figure, we plot the actual and
baseline-predicted load for an office building on two  DR days and
one normal day. The left and middle plots show that responses to
DR signals can seem variable – and may, in fact, be variable. The
right plot demonstrates baseline model error.

The purpose of this paper is to understand the variability of C&I
facility responses to DR events. The question is important for two
reasons. First, in order to efficiently allocate generating resources,
power system operators must predict how aggregations of facilities
will respond on demand response days. If all observed DR vari-
ability resulted from unmodeled load variability, a power system
operator could expect consistent DR behavior and would only need
to deal with the usual amount of demand-side variability. How-
ever, if real DR variability is present, the DR program may  create an
extra burden of variability for the system operator to manage. This
could require additional power system services (e.g., reserves). In
extreme cases, real DR variability could result in significant devia-
tions in grid frequency or expected power flow.

The second reason variability is important is because DR pro-
grams are evaluated on the basis of whether or not facilities
(individually or in sum) appear to have reliable responses on DR
days. M&V  of utility DR programs, including those that do not
use baselines for settlement, often include analyses of the DR
performance (versus a baseline) of both individual facilities and
aggregations of facilities [6].  Variability may  affect the evaluation
of the DR program and determinations about whether or not a facil-
ity is suitable for DR [8].  Moreover, observed DR variability in an
individual facility affects how the facility perceives its own  DR per-
formance from event-to-event. A facility whose performance seems

inconsistent from one event to another may  be tempted to mod-
ify its DR strategy; however, the perceived inconsistency may  have
been caused by baseline model error.

Real DR variability is the most relevant measure for power
system operators and DR program evaluators. However, real DR
variability can only be estimated indirectly, by thoroughly charac-
terizing unmodeled load variability and relating it to observed DR
variability. Therefore, in this paper, we  first compute the error asso-
ciated with DR parameter estimates (e.g., demand shed estimates)
for 38 C&I facilities that participated in an automated dynamic elec-
tricity pricing program in California. We  then construct a variability
metric that captures the relative importance of real DR variability
versus unmodeled load variability, and compute this metric for all
of the facilties. We  find that most observed DR variability is the
result of baseline model error.

A note on terminology: The DR community uses several differ-
ent terms to denote the counterfactual power usage on DR days:
baselines, predictions, and forecasts. In this paper, we  use the term
‘baseline predictions’ to refer to ex-post estimates of counterfac-
tual power usage computed with regression parameters (identified
with historical demand/temperature data) and actual temperature
data for the purpose of M&V. We  reserve the term ‘forecast’ for ex-
ante estimates computed with forecasted temperature data, which
we do not discuss in this paper. We  use the term ‘DR parameter
estimates’ to refer to values, such as demand sheds, computed with
actual demand data and baseline predictions. The DR community
often refers to these values as ‘DR calculations’; however, we  prefer
our terminology because it makes clear that the values are uncer-
tain. The term ‘DR parameter estimates’ should not be confused
with ‘DR estimates,’ engineering estimates of expected demand
sheds.

The rest of this paper is organized as follows: In Sections 2 and 3,
we describe our data and baseline model. In Section 4, we explain
our error analysis. Then, in Section 5, we  present our results and
discussion with respect to baseline model error and DR variability.
Lastly, in Section 6, we  conclude.

2. Data

We  use 15-min interval whole building electric load data from
38 large C&I facilities (peak demand >200 kW)  in California that
participated in Pacific Gas and Electric Company’s (PG&E’s) Auto-
mated Critical Peak Pricing (CPP) Program between 2006 and 2009.
PG&E called CPP DR events on up to 12 summer business days (non-
holiday, weekdays) per year when system-wide load was  expected
to be high, which, in California, usually occurs on hot summer days
as a result of commercial and residential air conditioning. On DR
days, electricity prices were raised to three times the normal price

15 minute average electricity consumption from individual building (x-axis
= hours, y-axis = kW) (Mathieu et al Energy and Buildings, 2011)
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Renewables production aggregated across the state of California (CAISO)
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Name that process (5)

Electricity demand aggregated across the state of California (CAISO)
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Introduction

Early question: what drives variability in wind, solar,
electricity demand?
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Introduction

Early question: what drives variability in wind, solar,
electricity demand?

Weather

diurnal, annual periodicity
free convection, turbulence → chaos

People

diurnal, annual periodicity
Random fluctuations in when people do things: turning on light
switches, plugging in car, etc.
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Introduction

How do all these things come together?
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Introduction

How system operators think about variability & uncertainty

(source: CAISO)

System operators dispatch generation to follow 5 min schedules and
provide frequency control

More renewables ⇒ more variability and uncertainty. What to do?
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Introduction

Tools for managing variability and uncertainty

Better (or different) forecasts

New technologies for ramping quickly

Faster generators
“demand response”
storage

New market structures that provide financial compensation for faster
generators.

Focus of the lecture:

Survey some methods for describing load and renewables variability

Put them in the context of applications
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Outline

Physical load models

Introduction

Individual TCLs – Stochastic differential & difference equations

Aggregations of TCLs – ARMAX, PDE and state space formulations

Whole building models – Stochastic differential equations

Whole building models – disaggregation with smart meters

Renewables production models

Capturing solar PV variability
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Physical load models – Introduction

A framework for categorizing loads (cf Lijun Chen et al
2012

1 Energy-constrained tasks

Dishwasher, dryer
EV charging

2 Thermostically controlled loads (TCLs)

Refrigeration, water heating, space conditioning

These can be modeled with an internal energy state

Energy over time defines the performance of the load

Can turn on or off without impacting overall performance of the load.

...so they are good for load shaping
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Physical load models – Introduction

A framework for categorizing loads, ctd

3 Loads that support other basic activities

Lighting, elevators

4 Loads that are the activity

Computers, video games, televisions.

Depend on instantaneous power consumption

Turning them ON or OFF means electricity consumers go without

They are also much harder (if not impossible) to model from a first-principles
perspective

We’ll leave them out of further discussion.
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Physical load models – Introduction

What I will and won’t talk about

Load modeling has two major veins:

1 Those that focus on describing how real power varies in time in order
to serve end-use functions

2 Those designed to describe dynamics of the loads as a function of
power system state variables (frequency, voltage...).

Ian Hiskens spoke about this on Monday.

I’ll focus on #1 and not #2.
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Physical load models – Individual TCLs

Outline

Physical load models

Introduction

Individual TCLs – Stochastic differential & difference equations

Aggregations of TCLs – ARMAX, PDE and state space formulations

Whole building models – Stochastic differential equations

Whole building models – disaggregation with smart meters

Renewables production models

Capturing solar PV variability
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Physical load models – Individual TCLs

Physically based TCL models

Ihara and Schweppe (1981) posed an early conceptual and mathematical
model of TCLs

4143

f = vector of parameters representing cus-
tomer' s lifestyle.

m vector of meteorological parameters.

Each elemental power y is factored into an ele-
mental potential demand c and an elemental utilization
factor u:

Yijk(t, Z) = cijk(t, Z) * Uijk(t, Z)

(6)i (t.,m) = Elyij(t,m)l = Xj * a. (t) * ffi(tcm)3 ijk j . .

where:

Xj = E(xijk)
acj (t) = E{ig jk( t) }

$j( t,m) = Efwi jk(t,m)} .

(2)

The potential demand is the maximum demand at time
t in kW and/or kvar that the customer can achieve by
adjusting the controls of the device. The potential
demand is further factored into a capital stock x and
a demand response term r:

(3)

(7)

(8)

(9)

It should be noted that the expected values of the
factors do not depend on the device class i nor on the
billing entity k reflecting the underlying objective
of the usage class definition.

where the capital stock is the kW and/or kvar' rating
of the device under nominal conditions, and the demand
response term represents the voltage and frequency de-
pendence of the device.

The utilization factor represents the fraction of
the potential demand which is actually drawn by the
device at time t. The utilization factor is decom-
posed into a lifestyle term Q and a usage response
term w:

uijk(t, z) =ijk(t, f) * wijk(t, m). (4)

The lifestyle term principally models the customer's
actions on the controls of the device such as a power
switch and manual adjustments. On the other hand,
the usage response term models the automatic controls
of the device such as a thermostat control. In gen-
eral, both the lifestyle and usage response terms are
stochastic, and their statistical properties depend on
the exogenous input z, which can also be stochastic.

One of the unavoidable realities of developing a
general model structure is that, "everything depends
on everything else and often on itself." For example,
only the weather dependence of the usage response term
w is explicitly shown solely to indicate a subjective
interest in its dominant effect on the thermostat be-
havior. In reality, however, the thermostat setting,
which has an equally significant effect on the thermo-
stat behavior,. is determined by a customer, whose de-
cision is influenced by economic parameters, life-
style, and weather. Weather and economic parameters
can influence the customer's lifestyle, and the global
collection of customers' lifestyles can have impacts
on economic parameters.

Organization

The thermodynamics of a house as seen at a thermo-
stat is modeled in the next section, and then a usage
response model is derived. The subscripts i, j, and k
are omitted for simplicity in these sections. A cold
load pickup model and an example are presented in the
later sections.

The basic modeling procedure is presented in terms
of the space heating load where only a single heating
unit of an "on-off" type is installed. With a simple
sign convention the results are also applicable to the
space cooling load.

THERMODYNAMICS AS SEEN AT THERMOSTAT

The mechanism determining the elemental power of a
space heater is not trivial (Figure 1). It is not at
all easy to find quantitative relationships, even at a
global level, between customers' lifestyles and vari-
ous exogenous processes such as economy and weather.
Although the house thermodynamics and the thermostat
control seem easier to model, they still need careful
consideration [2]. From a purely theoretical point
of view, one can use a cetailed simulation model which
has been developed mainly to study the thermal design
of a house. Obviously, this approach is not practical
for modeling the system-level heating load because of
the enormous amount of data preparation and computa-
tion work required for a large number of different
houses. One of the most challenging tasks in physic-
ally based modeling of the system-level load is to
minimize the data and computation requirement.

For the purpose of modeling cold load pickup, the
capital stock can be treated as an unknown constant,
the demand response term as unity, and the lifestyle
term as an unknown function of time. The elemental
?ower model simplifies to:

Yijk(t, m) = xijk * Lijk(t) * wijk(t, m) (5)

Elemental Independence

A critical assumption is made concerning the sta-
tistical independence of the elemental powers in a
conditional sense. (See E1] for the rigorous defini-
tion of elemental independence and the significance of
the assumption.) For the specialized purpose of
modeling cold load pickup presented here, the assump-
tion is interpreted as follows:

It is possible to classify the elemental powers by
subscripts i, j, and k such that the expected
value of the elemental power is the product of the
expected values of the factors; i.e.,

Figure 1. Mechanism Determining Space Heater De-
mand.

Cijk(tt Z) = xijk(tv e) 0 rijk(tt d)

Their interest was in describing the phenomenon of “cold load pickup”
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Physical load models – Individual TCLs

TCL models as hybrid state deterministic ODEs (Ihara and
Schweppe 1981)

Ci
dθi (t)

dt
= −Ri (θi (t)− θa) + mi (t)Pi

mi (t) =





0, θi (t) > θi ,+
1, θi (t) < θi ,−

mi (t), otherwise

(as shown here, this is a
heating model)

θi (t) = temperature of ith load Ci = thermal capacitance
mi (t) = OFF/ON state of the load ∈ {0, 1} Ri = thermal resistance
θa = ambient temp θi,± = themostat limits

In this model, power changes due to ON/OFF switches and average power
over time changes due to varying ambient temp.
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Physical load models – Individual TCLs

Model performance (Ihara and Schweppe 1981)
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Figure 3. Comparison of Model and Test Results
(Room Temperature vs. Time for normal
condition, 80 minutes and 140 minutes
outages).
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Figure 2. Diversified Demand vs. Temperature.

the derivation):

dT/dt - (1/T)(T - Tf - wTg) (13)

where:

T = effective thermal time constant (a weighted
mean of the time constants of all the parts
of a house)

Tf = target temperature which the room tem-

perature T approaches while the heater is off
(dependent on weather and internal heat
source)

Tg temperature gain of heater (the heater
capacity relative to house heat loss,
independent of weather and internal heat
source).

A measurement was made to verify the model (Figure
3). Two outages (80 minutes and 140 minutes) were

simulated by turning off the heater in the author's
house, and the room temperature was measured at the
thermostat. The measured temperature excursions were
very simple and consistent among the simulated out-
ages. The model of Equation (13) with three param-

eters reproduced the measured temperature excursions
(total of six pieces of curves including the ones for
a normal condition) with a satisfactory accuracy. The
model parameters were determined simply from the
on/off-durations and the maximum temperature drop dur-
ing the 140 minutes outage:

Data Requirement

The on/off-durations completely describe the ther-

mostat behavior under normal conditions. They also
describe the thermostat behavior during cold load

pickup. For example, the room temperature will des-
cend approximately by 2A (twice the dead-band width)
during an outage lasting for 2do (twice the off-dur-

ation) requiring the heater to be on during cold load

pickup for approximately 2dl (twice the onduration)

before the room temperature returns to the original
value immediately prior to the outage. The approach
pursued here is to determine the on/off-durations
under normal conditions by using the diversified
demand data together with the minimum of additional
data and then to use the on/off-durations to describe
the load behavior during cold load pickup. The first
question to be answered is what additional data is
minimal and practically obtainable.

The on/off-durations are obtained by formally
solving Equation (13) for two temperature excursions
(with w=l and w=0) between the setpoints of the ther-
mostat:

dl/T = in {l + g/(l - s)}

do/l = in {l/(l - g/s)}

(17)

(18)

where:

(19)s = (Ts - Tf)/Tg

g = A/Tg . (20)

It should be noted that the weather dependency and the
effect of thermostat setting are contained in a single
variable s and that the two parameters T and g de-
pend only on the thermal characteristics of the house,
but not on the weather nor on the thermostat setting.
The thermal parameters can be obtained through experi-
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Physical load models – Individual TCLs

Application (1): Cold load pickup – thousands of loads’
aggregated power (Ihara and Schweppe 1981)

4149

o The mean usage response S0 before an out-
age and the harmonic constant e are normal-
ly distributed.

It should be emphasized that these assumptions are not
at all necessary for the use of the model in realistic
problems.

A total of 121 usage classes were defined by par-
titioning houses according to the mean usage response
before an outage (11 partitions) and to the harmonic
constant (11 partitions), and a simple program was de-
veloped to compute the evolution of the temperature
distribution for each class and the total load be-
havior during cold load pickup.

The base case chosen is:

Outage duration

Mean

D = 30 minutes

$°=.5 , 0 = 10 minutes

Standard deviation u = 30% (always chosen same
for both ° and 0).

Curve (2) of Figure 9 corresponds to the base case.
The load behavior during cold load pickup is very de-
pendent on 5% and therefore dependent on the
weather (Figure 9) as well as on the duration of out-
age (Figure 10). The load behavior becomes less
oscillatory with the increasing diversity among cus-
tomers (Figure 11).

Figure 9. Cold Load Pickup after 30 minutes Out-
age (S = Actual MW/Installed MW for
10,000 homes; before outage: g=0.7 for
(1), 5=0.5 for (2), and 5=0.2 for
(3)).

1.0

0.5

(I

I;

Figure 10. Cold Load Pickup after D minutes Out-
age (1. D=50; 2. D=30; 3. D=10; S =
Actual MW/Installed MW for 10,000
homes).

CONCLUDING REMARKS

The model yields a pessimistic estimate of the
overload due to the linear approximation used. It
should be noted that this approximation implies con-
stant energy recovery (the energy not supplied during
an outage is supplied after the outage without any re-
duction). Some improvements can be achieved by a
quadratic approximation of Equations (17) and (18) or
by using Equation (13) itself with the flip-flop model
of a thermostat. It is conceptually easy to make such
improvements, but it is not always easy to justify
additional data and computation requirements.

The basic idea presented in this paper is to cap-
ture the thermal characteristics of a house at a ther-
mostat without modeling all the details of the house.
This idea is not new. In fact, utilities have been
collecting diversified demand data for load forecast-
ing purposes and explaining the weather dependencies
of load without studying the details of the house. It
is not surprising to find that the diversified demand
data does not contain all the information required to
model cold load pickup. It lacks the information on
the house dynamics. Such information is not needed
for forecasting. It is pleasantly surprising, how-
ever, to find that the house dynamics can be condensed
into a single parameter (harmonic constant), and the
rest of the required information can be obtained from
the diversified demand data.

The behavior of space conditioning load during
cold load pickup is strongly dependent on the weather,
the duration of outage and the diversity of houses.
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Figure 11. Cold Load Pickup after 30 minutes Out-

age (S = Actual MW/Installed MW for
10,000 Homes; a = Standard Deviation
of Thermal Parameters; 1. a=20%,
2. ca=30%, 3. u=50%).

[1] General Electric Company and MIT, Systems
Engineering for Power V: Load Modeling
Methodologies: Interim Report, prepared for the
Department of Energy, No. HCP/T5112-01, August,
1979.

Parameters drawn from Gaussian distribution. Which has the largest
standard deviation on the distribution?

Ans: (3). Diversity damps
oscillations.
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Physical load models – Individual TCLs

TCL models as hybrid state stochastic ODEs (Malhame
and Chong TAC 1985)

Ci
dθi (t)

dt
= −Ri (θi (t)− θa) + mi (t)Pi+wi (t)

mi (t) =





0, θi (t) > θi ,+
1, θi (t) < θi ,−

mi (t), otherwise

y(t) =
N∑

i=1

1

ηi
Pimi (t)

(as shown here, this is a
heating model)

θi (t) = temperature of ith load Ci = thermal capacitance
mi (t) = OFF/ON state of the load ∈ {0, 1} Ri = thermal resistance
wi (t) = noise Pi = power to ON load
y(t) = total power consumed (after conversion losses)
ηi = conversion efficiency θi,± = themostat limits
θa = ambient temp
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Physical load models – Individual TCLs

What’s the noise for?

Motivating examples

Weather

Opening / closing windows and doors

Internal heat gain driven by occupants

Practical reasons

Facilitates a very nice aggregation approximation (more to come)

Facilitates estimation via Kalman filter (more later)
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Physical load models – Individual TCLs

Application (2): Receding horizon control Mathieu,

Kamgarpour et al (forthcoming)

Converting to discrete time:

Saves 5-35% of energy costs
without disrupting comfort.

min
ξi∈Ξ

h

k0+Nb∑

k=k0

lky
i
k

s.t. TCL dynamics

h=time step,

lk = energy price,

ξ = overrides local ON/OFF control (only within deadband)
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TABLE III
COMPARISON OF WHOLESALE ENERGY COST SAVINGS (DATA FROM MERCED, CALFIORNIA, USA)

✓a statistics (�C) LMP statistics ($/MWh) Benchmark Predicted Simulated
Date Temperature & Price Characteristics mean max min mean max min savings savings savings
Jun 2, 2010 mod temp, mod price variability 20.9 31.1 11.1 31.3 522.8 -36.8 11.2% 11.8% 9.0%
Jul 20, 2010 high temp, low price variability 22.2 34.4 10.6 30.8 43.2 -5.5 4.3% 3.4% 2.5%
Sep 3, 2010 high temp, high price variability 23.9 36.1 12.2 47.6 767.8 -37.4 36.2% 28.8% 30.0%
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Fig. 5. Merced, California, USA interval LMPs and outdoor temperatures (top), and power consumption profiles of 1,000 ACs arbitraging the LMPs using
the benchmark approach (middle) and storage model approach (bottom). Maximum interval LMP values, which are cut-off in the plots, are shown in Table III.

D. Comparing benchmark and storage model approaches

We now study three days to compare the results of the
benchmark approach and the storage model approach. Table III
summarizes the temperature/price characteristics and statistics,
and lists the savings resulting from the benchmark approach
(benchmark savings) and the storage model approach, both
those predicted by the optimization (predicted savings) and
those achieved via control of the population to follow the
reference trajectory (simulated savings). Figure 5 shows power
consumption profiles with the benchmark approach (middle)
and the storage model approach (bottom). Figure 6 shows three
hours of results from Sep 3, 2010 when the electricity prices
are particularly variable. The middle two plots show the power
consumption profile of a controlled (benchmark approach)
and uncontrolled example TCL. The uncontrolled TCL has
a relatively regular duty cycle, which decreases with time due
to decreasing outdoor temperature, while the controlled TCL
reduces energy consumption when prices are high and saves
34.1% of its energy costs over the period. The bottom two plots
show a zoomed-in version of the results plotted in Fig. 5.

As shown in Table III, energy savings are highest on days
with high temperatures and high price variability. However,
even on days with low price variability, the system tries to
arbitrage, as shown in Fig. 5. The simulated savings resulting
from the storage model approach are always lower than the
benchmark savings since the storage model approach relies on
imperfect models and partial information.

Though the predicted savings are not accurate, the opti-
mization does provide a meaningful control trajectory, as ex-
emplified by the simulated savings. However, as Fig. 5 shows,
that trajectory is quite different from the optimal consumption
profile achieved by the benchmark approach. The thermal
energy storage model overestimates the availability of the TCL
population in the morning. This is because we use model
parameters that are a function of only the current ambient
temperature, not the temperature dynamics. In the morning,
indoor temperatures are usually low because the houses have
cooled at night and so the current ambient temperature is not
a good predictor of TCL availability. Including temperature
dynamics is an area of future investigation.

We also see that the benchmark approach leads to more
aggregate power oscillations than the storage model approach.
This is, in part, due to translating the optimal mean power
consumption in each price interval into a piecewise constant
control trajectory. As shown in Fig. 6, the plant is often unable
to follow this trajectory. A more dynamic trajectory may result
in better control performance and savings.

More aggregate power oscillations does not necessarily
imply more individual TCL switching actions. In Table IV,
we list the mean, median, minimum, and maximum number
of switching actions (including both on and off switching)
for each day and for each case. Controlled TCLs switch
approximately 4-8 times more per day than uncontrolled TCLs.
Increasing TCL switching actions increases mechanical wear
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Physical load models – Aggregations

Outline

Physical load models

Introduction

Individual TCLs – Stochastic differential & difference equations

Aggregations of TCLs – ARMAX, PDE & state space formulations

Whole building models – Stochastic differential equations

Whole building models – disaggregation with smart meters

Renewables production models

Capturing solar PV variability
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Exploring perturbations to thermostatically controlled loads

(TCLmovie)
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Physical load models – Aggregations

How to describe the dynamics of the aggregation?

Option 1: Simple time series model

A(q)yk = B(q)uk + C (q)εk

In this case, y is aggregate power, u is temperature setpoint change.

Author's personal copy

mass from one state to the other, and delays the movement from
the other state back to the first. Specifically, consider a decrease
in the thermostat set point, i.e., Dutnþ1 ¼ utnþ1 # utn < 0. In this case,
all loads in the off state whose temperature satisfies

hs þ d=2þ utnþ1 $ hi;tnþ1 < hs þ d=2þ utn ð21Þ

will turn on. Similarly, a gap in probability mass in the distribution
of loads in the on state will form in the region

hs # d=2þ utnþ1 $ hi;tnþ1 < hs # d=2þ utn ð22Þ

Thermal mass will have to traverse the region defined in Eq.
(22), of width Dutnþ1 , before turning off, and this will cause a delay
in the transition of these loads from the on to the off states, relative
to what would have occurred if the thermostat set point had not
changed.

The net result of this set point change will be an accumulation
of loads in the on state, leading to an increase in the total power
demanded by the aggregated population of loads. The reverse
argument can be made for an increase in the temperature set
point: it causes an accumulation of loads in the off state and a cor-
responding reduction in aggregate demand.

Now consider what happens when the heating and cooling
rates are approximately constant across the temperature deadband
(as is assumed in Eqs. (14) and (15)) and the variance of wi;tn ap-
proaches zero. Referring to Eqs. (17) and (18), in this case the stea-
dy state probability densities approach a uniform distribution (i.e.,
independent of temperature), with f ss

0b ' c=dðr þ cÞ and
f ss
1b ' r=dðr þ cÞ. For small changes in the set point, the sum of the

probability mass that accumulates in the on state as a result of
the change will then be:

Df1 ¼ #Dutn

r
dðr þ cÞ

! "
# Dutn

c
dðr þ cÞ

! "
¼ #Dutn

d
; ð23Þ

where the negative sign is required because reductions in the set
point cause an increase in the density of loads in the on state. This
equation indicates that, subject to the assumptions above, when the
system is in steady state the net transfer of probability mass from
one state to another is a function of exclusively the size of the set
point change and the width of the temperature deadband. The
resulting change in aggregate power demand will be

Dyss
tnþ1
¼ #Dutn

d

X

i

1
g Pi; ð24Þ

where the assumption has been made that Pi is distributed uni-
formly with respect to temperature. The superscript on y indicates
that this equation applies to changes in power from the steady state
condition. The subscript index on y is one time step ahead of the in-
dex on u because, referring to Eqs. (3) and (4), power output is de-
fined to change in the time step following the input signal.

Eq. (24) has the practical feature that it involves few parame-
ters, and they are straightforward to obtain. Utilities typically
know total capacity under load control (i.e.,

P
Pi/g), and the tem-

perature deadband (d) is in fact a thermostat design variable.
In practice, if the signal utn is time-varying, the probability dis-

tribution of loads will not be in steady state, as is evident from Figs.
2 and 3. However, as Fig. 3 shows, disturbances in the probability
distribution tend to decay as they approach the state transition,
and so the steady state assumption may be reasonable there. In
fact, if disturbances are i.i.d. by the time they reach the state tran-
sition, Eq. (24) can be re-written for non-steady state conditions
with an error term:

Dytnþ1
¼ #Dutn

d

X

i

1
gi

Pi þ etn ð25Þ

where etn is a white noise disturbance. Eq. (25) will be referred to as
the theoretical model. It can also be written in ARX form:

AðqÞytn
¼ BðqÞutn þ etn : ð26Þ

Eq. (25) can be recovered from (26) if A(q) and B(q) are chosen as
follows:

AðqÞ ¼ 1# q#1;BðqÞ ¼ #ðq#1 # q#2Þ
X

Pi=gid ð27Þ

As an alternative, a system identification approach can be taken
by setting

AðqÞ ¼ 1# a1q#1;BðqÞ ¼ b1q#1 þ b2q#2; ð28Þ

and solving for the values of the coefficients by, for example, mini-
mizing the quadratic prediction error [24].

Fig. 4 shows the prediction error associated with using various
forms of the models above to predict the simulation results from
the right column of Fig. 2. The top panel shows prediction error
for a simple persistence model, i.e., A(q) = 1#q#1, B(q) = 0 in Eq.
(26) above. The fit for the model, measured as
ð1# kŷt # ytkÞ=k!y# ytk (where k ( k is the Euclidean norm and ŷ
and !y are the predicted and mean outputs), appears high but is
the result of autocorrelation in the input signal. The middle panel
shows error for the theoretical model and for the second half of
the data using the ARX model, Eq. (26), after determining the coef-
ficients using the first half of the data. These models, whose perfor-
mance is virtually indistinguishable, perform substantially better
than the persistence model, leaving 6–7% of variation unexplained,
versus over 15% for the persistence model.

It is apparent from the middle panel of Fig. 4 that there is auto-
correlation in the displayed residuals, indicating that there are
non-random un-modeled dynamics in the data. In this example,
autocorrelation for the ARX model residuals out to the first twenty
lags is outside the 95% confidence interval [24] (result not shown).
However, cross-correlation between the residual time series and
the input signal is well inside the 95% confidence interval (not
shown), indicating that the process model correctly models the ef-
fect of control. A portion of the unobserved variation can be ex-
plained by adding a noise model to the ARX model, i.e., by
estimating an ARMAX model for the data, specifically,

Fig. 4. Prediction error for various forms of Eqs. (26) and (29) subject to the input
signal defined in Eq. (20). Parameters are as in Table 1, h = 1 min.

1394 D.S. Callaway / Energy Conversion and Management 50 (2009) 1389–1400

Problem: Model doesn’t track system states (internal temp) and performs
poorly if perturbations are large.

D. Callaway (UC Berkeley) Stochastic Models January, 14 2015 25 / 65



Physical load models – Aggregations

But aren’t there better ways to describe the aggregation?

Option 2: PDE models

Population can be modeled
as a pdf in temperature

Fokker-planck coupled PDEs
describe dynamics

Derivation via
Chapman-Komogorov
Requires load
homogeneity, stochastic
differential equation for
derivation.

Temperature (θ) 

∂f0
∂t = ∂

∂θ

[(
1
CR (θ(t)− θa)

)
f0
]

+ σ2

2
∂2

∂θ2 f0
∂f1
∂t = ∂

∂θ

[(
1
CR (θ(t)− θa) + P

C

)
f1
]

+ σ2

2
∂2

∂θ2 f1

(Malhame & Chong, TAC ’85)
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describe dynamics

Derivation via
Chapman-Komogorov
Requires load
homogeneity, stochastic
differential equation for
derivation.

Temperature (θ) 

∂f0
∂t = ∂

∂θ

[(
1
CR (θ(t)− θa)

)
f0
]

+ σ2

2
∂2

∂θ2 f0
∂f1
∂t = ∂

∂θ

[(
1
CR (θ(t)− θa) + P

C

)
f1
]

+ σ2

2
∂2

∂θ2 f1

(Malhame & Chong, TAC ’85)
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Physical load models – Aggregations

Fokker-Planck approximation solution

Non-stationary solution eigenvalues will determine how quickly
disturbances decay to steady state.

unable to find nonstationary solutions under M&C assumption of
constant indoor temp

However, the original system can in fact be solved by separation of
variables (f (θ, t) = ϕ(θ)e−λt) and the series method. The result:
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Physical load models – Aggregations

Application (3): PDEs yield insight into the dynamics
(Callaway ’09)

Nonstationary solution to the
homog. PDE with noise has
modes with eigenvalues

λk =
k

CR
, k = 0, 1, 2...

⇒ if CR (thermal time constant)
is small enough, steady state
distribution informs control

Figure: control law based on
steady state approximation

Result: small setpoint
change → large, accurate
response

(Callaway ’09)
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Physical load models – Aggregations

Challenges to the Fokker-Planck approach

Incorporating parameter heterogeneity

Available control tools relatively small

System identification tends to be computationally intensive.
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Physical load models – Aggregations

A more flexible framework

Option 3: State space models

x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k)

(Liu & Chassin, TPWRS ’05; Bashash & Fathy

TCST ’12; various Callaway pubs.)

x = fraction of TCLs in each bin

A = state transition matrix

y = system output: aggregate

power only, or power and all x

u = Nbin/2× 1, switch OFF/ON

B =




−1 0
. . .

0 −1

0 1

. .
.

1 0




.
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Physical load models – Aggregations

State space models: Opportunities

Can derive model analytically from heterogeneous SDEs (Mathieu et al

TPWRS ’13, Kamgarpour et al IREP ’13)

Simple to model a variety of control signals

Kalman filtering yields states; nonlinear filter can deliver parameters
(Mathieu et al TPWRS ’13)

Wide array of control tools apply for this and similar models:

MPC (e.g. Mathieu TPWRS ’14)
LQR (e.g. Kundu et al PSCC ’11)
Sliding mode (e.g. Bashash and Fathy TCST ’12)

Alternatives to get to LTI plant model: aggregate step function
laplace transfers and invert (Kundu et al PSCC ’11)
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Physical load models – Aggregations

Application (4) What communication and sensing
equipment do we need? (Mathieu et al TPWRS 2013)

Reference case: Meter power and temperature at all controlled loads,
error following dispatch signal = 0.6% RMS (smaller is better)
Case 1: Meter the ON/OFF state at all loads, measure aggregate power
at the distribution substation. Result: error = 0.76% RMS
Case 2: Meter only aggregate power at distribution substation. Result:
error = 5% RMS (this compares favorably to conventional generators)

State	
  
es'mator	
  &	
  
controller	
  

substa'on	
  power	
  
consump'on	
  

broadcast	
  
control	
  to	
  
ECDRs	
  

(c.f. Mathieu et al TPWRS ’13)

D. Callaway (UC Berkeley) Stochastic Models January, 14 2015 32 / 65



Physical load models – Aggregations

Centralized control via state space models: Open problems

State	
  
es'mator	
  &	
  
controller	
  

substa'on	
  power	
  
consump'on	
  

broadcast	
  
control	
  to	
  
ECDRs	
  

State space model is time-varying; depends on outdoor temperature
and occupancy (Mathieu et al ECC13), but more work needed
What is the process noise covariance? Abstraction methods can
address (Soudjani and Abate, TCST’14); more work needed
Parameter heterogeneity (Mathieu et al TPWRS ’13, Kamgarpour et al

IREP ’13). Very few satisfying answers here!
Filter observer error can depend on forecast of uncontrolled loads ⇒
short term, small spatial scale forecasts needed.
Validation!
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Physical load models – Whole buildings

Outline

Physical load models

Introduction

Individual TCLs – Stochastic differential & difference equations

Aggregations of TCLs – ARMAX, PDE and state space formulations

Whole building models – Stochastic differential equations

Whole building models – disaggregation with smart meters

Renewables production models

Capturing solar PV variability
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Physical load models – Whole buildings

Modeling total customer load as an SDE

Customer energy consumption: e it is the total energy consumption up
to time t by customer i

de it = (li (t)+uit)dt+σ̃i (t)dW i
t

(more validation to come)

Direct Load Control for Financial Risk Management in
Electricity Markets via Risk-Limiting Dynamic Contracts

Insoon Yang Duncan S. Callaway Claire J. Tomlin

Abstract— This paper proposes a new direct load control
framework that provides financial risk management solutions
for real-time electricity markets. In this program, a load-serving
entity makes risk-limiting dynamic contracts with its customers
to optimally manage its revenue and risk which is generated
by both price volatility and demand uncertainty regarding
distributed renewable generation as negative load. The key
feature of our contract method is the risk-limiting capability:
the amount of the risk transferred to each customer is less than
or equal to a pre-specified threshold. This capability is achieved
by formulating the contract design problem as mean-variance
constrained risk-sensitive control. We develop a solution ap-
proach based on dynamic programming. The proposed direct
load control method is scalable with respect to the number of
customers: the optimal contract design problem for n customers
can be decomposed into n low-dimensional problems. This
decomposition allows the load-serving entity to execute these
contracts with decentralized control and centralized monitoring
of its customers’ loads. We demonstrate the performance of
the proposed contracts by using locational marginal price data
from the Electricity Reliability Council of Texas and data on
the electric energy consumption of customers in Austin, Texas.

I. INTRODUCTION

II. THE MODELS AND DATA ASSIMILATION

The proposed direct load control program is based on
dynamic models for energy price in a real-time market, each
customer’s energy consumption and load estimated using
real-world data. We consider the situation in which a load-
serving entity provides the program with n customers in the
same distribution system. Therefore, the real-time energy
imbalance price can be chosen as the locational marginal
price at the real-time market for the distribution system.
For notational convenience, we let load i denote customer
i’s load enrolled in the direct load control program for
i 2 {1, · · · , n}.

A. Total Power Consumption
Let ⌘i := {⌘i

t}0tT be customer i’s energy consumption
process: ⌘i

t represents the energy consumption (kWh) for
[0, t] by customer i. We model this process as the following
stochastic differential equation (SDE):

d⌘i
t =

�
li(t) + ui

t

�
dt + �̃i(t)dW i

t , (1)

This work was supported by the NSF CPS project ActionWebs under
grant number 0931843, NSF CPS project FORCES under grant number
1239166, Robert Bosch LLC through its Bosch Energy Research Network
funding program and NSF CPS Award number 1239467.

I. Yang and C. J. Tomlin are with the Department of Electrical Engineer-
ing and Computer Sciences, University of California, Berkeley, CA 94720,
USA {iyang, tomlin}@eecs.berkeley.edu

D. S. Callaway is with the Energy and Resources Group, University of
California, Berkeley, CA 94720, USA dcal@berkeley.edu
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Fig. 1: (a) Sample trajectories of energy consumption data
for one customer from 10 am to 6 pm; (b) sample trajectories
generated by an estimated model.

where ui := {ui
t}0tT denotes load i’s power consumption

and li denotes the forecast of customer i’s demand except
for load i. The diffusion term �̃i(t)dW i

t models the effect
of forecast error, where W i := {W i

t }0tT is a one-
dimensional standard Brownian motion on a probability
space (⌦, F , P). The validity of this Brownian motion-based
model for the proposed contracts is tested using data in
Section V-B. We also assume that W i is independent of W j

for i 6= j.

We use the data on the electric energy consumption of
customers in Austin, Texas [1] to estimate the model and
82 samples of one customer’s energy consumption data are
shown in Fig. 1 (a). Given the data for ⌘i and ui, we estimate
the load forecast li(t) by averaging the data samples of power
consumption at time t by customer i’s load other than load i
using the fact that E[

R t

⌧
�̃i(t)dW i

t ] = 0 for any ⌧, t 2 [0, T ].
We then estimate the diffusion coefficient �̃i(t) using the
Kalman filter [2], [3]. The estimated diffusion coefficient is
scaled by a constant factor such that the variance of ⌘i

T in
the model is equal to the variance of customer i’s actual total
energy consumption data. This scaling is important because
we use the variance of each customer’s payoff, which will be
introduced in Section II-D, as the customer’s risk measure in
this work. Fig. 1 (b) shows 82 sampled trajectories generated
by an estimated model.

Load state dynamics: dx it = fi (x
i
t , u

i
t)dt

Example: First order temperature dynamics for air conditioning
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Physical load models – Whole buildings

Electricity price dynamics also modeled as SDE

λt : Electricity price in the real-time market (LMP)

mean-reverting model [Deng, Johnson, Sogomonian, DSS, 2001], [Kamat, Oren, OR, 2002]

dλt = r0(ν(t)− ln λt)λtdt + σ0(t)λtdW
0
t

change of variable =⇒ linear model

dwt = r0(ν(t)− wt)dt + σ0(t)dW 0
t

data (ERCOT LMP) vs. identified model
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Physical load models – Whole buildings

Application (5): Financial Risk-Sharing with Risk-Limiting
Dynamic Contracts (Yang, Callaway, Tomlin Allerton ’14)

low risk!
to customers

Real-Time!
Pricing

Fixed!
Price

Risk-Limiting!
Dynamic Contract

high risk!
to customers

risk-limiting!
capability

Key Idea: Direct load control + Contract

Goal:

Capture the benefits of real time pricing

But also manage concerns over risk
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Physical load models – Whole buildings

Application (5): Risk management: price volatility

Energy price is high and volatile from 4pm to 5pm:
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Physical load models – Whole buildings

Application (5): Comparison to customer optimal control

optimal control with no contract

max
ui∈Ui

E[ĴAi [ui ]]

subject to dx it = fi (x
i
t , u

i
t)dt,

nominal mean and
variance:
b̄ = E[ĴAi [u∗i ],

S̄ = Var[ĴAi [u∗i ]

contract with
(b, S) = (b̄, ρS̄)

Blue line: control law
(from model) applied
against actual price
and load data
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Physical load models – disaggregation

Outline

Physical load models

Introduction

Individual TCLs – Stochastic differential & difference equations

Aggregations of TCLs – ARMAX, PDE and state space formulations

Whole building models – Stochastic differential equations

Whole building models – disaggregation with smart meters

Renewables production models

Capturing solar PV variability
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Physical load models – disaggregation

Smart meters

Provide whole building electricity consumption on 15- to 60-minute
intervals.

Can they be used to identify customers for demand response, or to
issue commands for demand response?

Major target for demand response: air conditioning.
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Physical load models – disaggregation

Key challenge: WHEN is air conditioning operating?

53

combine to produce a time-varying load. The relative magnitude and pattern of the heat
flows depends on the building characteristics and exposure, resulting in a building-specific
load profile."

A model based on total electric energy consumed each day, in kWh, averages out tran-
sients that take place over shorter time scales, including occupant schedules, thermal lags,
and ad-hoc consumption during the course of each day, yet they preserve the signatures of
thermal response and occupant activity at the daily level. A model focused on a home’s
energy response to outside conditions at finer time scales must expend significant e�ort
performing state estimation, often without the benefit of ground truth data.

Impact of time averaging on electricity consumption data

Figure 3.1: Scatter plots of average power demand vs. average temperature for hourly
(left) and daily (right) time intervals for the same residence.

Figure 3.1 on page 53 provides insight into the challenges of modeling hourly electric-
ity demand. Both scatter plots draw upon the same data from a residence located in the
hot climate of Bakersfield, CA (California’s Zone 13). The hourly data on the left sug-
gests highly variable consumption, ranging from a consistent and temperature-insensitive
minimum well under 1 kW to temperature-sensitive maximum values that increases dra-
matically at higher temperatures to an upper limit of between 7 and 8 kW. In between
these extremes are many interstitial observations. This pattern is consistent with con-
sumption influenced by occupancy and scheduling, mediated by the mass of the walls

D. Callaway (UC Berkeley) Stochastic Models January, 14 2015 42 / 65



Physical load models – disaggregation

Key challenge: WHEN is air conditioning operating?

53

combine to produce a time-varying load. The relative magnitude and pattern of the heat
flows depends on the building characteristics and exposure, resulting in a building-specific
load profile."

A model based on total electric energy consumed each day, in kWh, averages out tran-
sients that take place over shorter time scales, including occupant schedules, thermal lags,
and ad-hoc consumption during the course of each day, yet they preserve the signatures of
thermal response and occupant activity at the daily level. A model focused on a home’s
energy response to outside conditions at finer time scales must expend significant e�ort
performing state estimation, often without the benefit of ground truth data.

Impact of time averaging on electricity consumption data

Figure 3.1: Scatter plots of average power demand vs. average temperature for hourly
(left) and daily (right) time intervals for the same residence.

Figure 3.1 on page 53 provides insight into the challenges of modeling hourly electric-
ity demand. Both scatter plots draw upon the same data from a residence located in the
hot climate of Bakersfield, CA (California’s Zone 13). The hourly data on the left sug-
gests highly variable consumption, ranging from a consistent and temperature-insensitive
minimum well under 1 kW to temperature-sensitive maximum values that increases dra-
matically at higher temperatures to an upper limit of between 7 and 8 kW. In between
these extremes are many interstitial observations. This pattern is consistent with con-
sumption influenced by occupancy and scheduling, mediated by the mass of the walls

53

combine to produce a time-varying load. The relative magnitude and pattern of the heat
flows depends on the building characteristics and exposure, resulting in a building-specific
load profile."

A model based on total electric energy consumed each day, in kWh, averages out tran-
sients that take place over shorter time scales, including occupant schedules, thermal lags,
and ad-hoc consumption during the course of each day, yet they preserve the signatures of
thermal response and occupant activity at the daily level. A model focused on a home’s
energy response to outside conditions at finer time scales must expend significant e�ort
performing state estimation, often without the benefit of ground truth data.

Impact of time averaging on electricity consumption data

Figure 3.1: Scatter plots of average power demand vs. average temperature for hourly
(left) and daily (right) time intervals for the same residence.

Figure 3.1 on page 53 provides insight into the challenges of modeling hourly electric-
ity demand. Both scatter plots draw upon the same data from a residence located in the
hot climate of Bakersfield, CA (California’s Zone 13). The hourly data on the left sug-
gests highly variable consumption, ranging from a consistent and temperature-insensitive
minimum well under 1 kW to temperature-sensitive maximum values that increases dra-
matically at higher temperatures to an upper limit of between 7 and 8 kW. In between
these extremes are many interstitial observations. This pattern is consistent with con-
sumption influenced by occupancy and scheduling, mediated by the mass of the walls

D. Callaway (UC Berkeley) Stochastic Models January, 14 2015 42 / 65



Physical load models – disaggregation

Model

Wt = hourly average power

≈
24∑

h=1

[Hrh,t(weekdaytγh + weekendtδh)]

+Ct(η + βmax(0,Tt − CP))

Known:
Hrh,t , weekdayt and weekendt : indicator variables

Tt , outside air temperature

To estimate:
γh and δh: hourly fixed effects

η and β determine cooling intensity

Ct ∈ {0, 1} and CP: cooling ON/OFF status and “change point”
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Physical load models – disaggregation

Model performance
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Physical load models – disaggregation

Estimating the model

It’s easy to estimate this model IF Ct and CP are known.

Estimating CP: Standard method (ASHRAE inverse modeling toolkit) is
to choose best model in a plausible range of CPs.

We adapt this by
maximizing likelihood:

Lt =





N (et ; 0, σ2)(fclg/f>CP) Ct = 1
N (et ; 0, σ2)(1− fclg/f>CP) Ct = 0,Tt > CP

N (et ; 0, σ2) Tt ≤ CP
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Physical load models – disaggregation
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Physical load models – disaggregation

Estimating the model

It’s easy to estimate this model IF Ct and CP are known.

Estimating CP: Standard method (ASHRAE inverse modeling toolkit) is
to choose best model in a plausible range of CPs. We adapt this by
maximizing likelihood:

Lt =





N (et ; 0, σ2)(fclg/f>CP) Ct = 1
N (et ; 0, σ2)(1− fclg/f>CP) Ct = 0,Tt > CP

N (et ; 0, σ2) Tt ≤ CP

To determine Ct we follow an approach analogous to k-means clustering

1 Make an initial guess for which hours are Ct = 1, which Ct = 0.
2 Estimate the regression equation with the likelihood function
3 Calculate residuals for points with Tt > CP using cooling and

non-cooling models. Re-assign Ct if the other model fits better.
4 Repeat Steps 2 and 3; exit when assignments change by <0.5%
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Physical load models – disaggregation

model performance

Typical results:
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Physical load models – disaggregation

Application (6) Exploring the demand side resource (Dyson

et al 2014)
16

Figure 2.1: Maps of the three account sampling areas, from which 30,000 accounts were
randomly selected - 10,000 from each zone (left) and meter counts by zip code (right).

Figure 2.1 on page 16 presents maps of the PG&E service territory covered by the
data set, depicting the Coastal/Inland Hills/Central Valley geographic zones used to par-
tition the sample of 30,000 customers into 10,000 from each zone (left) and the count
of sampled smart meters per zip code (right). The populations of the zones are: Coast:
1.1M, Central Valley: 1.5M, and Inland Hills: 1.8M. Because they were randomly sam-
pled, the meter counts correlate with population densities, so the highest counts are found
in the San Francisco Bay Area and around other population centers along the coast and
in the Central Valley. Of the original 30,000 customers, roughly 24,700 meters passed
all data validation and cleansing criteria. Validation required more than 180 days of ob-
servations, no protracted periods of zero energy consumption, and, to eliminate samples
from unoccupied homes or faulty meters, average power demand > 110W. Further val-
idation is required for certain applications, such as calculations requiring a full year of
data. Approximately 22,300 electricity customers and 16,000 natural gas customers have
data spanning a year or more. Also, some meter data is discarded when matching meter
data to rarely incomplete temperature observations from nearby weather stations. Where
figures or discussion rely on data from a number of residences significantly di�erent from
the usable sample of 24,700, the actual numbers will be noted.

Key questions:

How do AC setpoint shifts change demand (instantaneously, steady
state)?
How do these changes in demand correlate with renewables?
variability?
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Physical load models – disaggregation

Application (6) Exploring the demand side resource (Dyson

et al 2014)
16

Figure 2.1: Maps of the three account sampling areas, from which 30,000 accounts were
randomly selected - 10,000 from each zone (left) and meter counts by zip code (right).

Figure 2.1 on page 16 presents maps of the PG&E service territory covered by the
data set, depicting the Coastal/Inland Hills/Central Valley geographic zones used to par-
tition the sample of 30,000 customers into 10,000 from each zone (left) and the count
of sampled smart meters per zip code (right). The populations of the zones are: Coast:
1.1M, Central Valley: 1.5M, and Inland Hills: 1.8M. Because they were randomly sam-
pled, the meter counts correlate with population densities, so the highest counts are found
in the San Francisco Bay Area and around other population centers along the coast and
in the Central Valley. Of the original 30,000 customers, roughly 24,700 meters passed
all data validation and cleansing criteria. Validation required more than 180 days of ob-
servations, no protracted periods of zero energy consumption, and, to eliminate samples
from unoccupied homes or faulty meters, average power demand > 110W. Further val-
idation is required for certain applications, such as calculations requiring a full year of
data. Approximately 22,300 electricity customers and 16,000 natural gas customers have
data spanning a year or more. Also, some meter data is discarded when matching meter
data to rarely incomplete temperature observations from nearby weather stations. Where
figures or discussion rely on data from a number of residences significantly di�erent from
the usable sample of 24,700, the actual numbers will be noted.

Key questions:

How do AC setpoint shifts change demand (instantaneously, steady
state)?
How do these changes in demand correlate with renewables?
variability?D. Callaway (UC Berkeley) Stochastic Models January, 14 2015 47 / 65



Physical load models – disaggregation

Computing potential
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Physical load models – disaggregation

Computing potential

4 degrees

steady state
response
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Physical load models – disaggregation

Computing potential

Instantaneous response
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Physical load models – disaggregation

Application (6): Making the case for targeting customers
for DR

...a large fraction of the resource is in a small fraction of customers.
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The result is for the
PG&E sample (30,000
customers; total
PG&E is roughly
150× larger)

MW-hour is the sum of MW available in each hour of the year if buildings
increased their temperature setpoints by 4 degrees. (Note this is about
13% of annual electricity consumed for cooling.)

D. Callaway (UC Berkeley) Stochastic Models January, 14 2015 49 / 65



Physical load models – disaggregation

Application (6) Does the resource correlate with solar
ramps?

Comparing summer solar ramps to DR availability (scaled to all PG&E)

Resource not as big in spring, when net load ramp may be worst.
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Physical load models – disaggregation
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Physical load models – disaggregation

Application (6): Instantaneous vs. steady state

The instantaneous resource is much larger than the steady state resource

Hours
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1−hour average reduction with 4°F setpoint change
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Renewable production models

Outline

Physical load models

Introduction

Individual TCLs – Stochastic differential & difference equations

Aggregations of TCLs – ARMAX, PDE and state space formulations

Whole building models – Stochastic differential equations

Whole building models – disaggregation with smart meters

Renewables production models

Capturing solar PV variability
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Renewable production models

Solar Volatility
Estimate Weather Regimes 
• Sunny 

•  Non-volatile 
•  (moving std) σm<1% 
•  Generation>70% 

• Cloudy 
•  σm<1% 
•  Generation<70% 

• Partly Cloudy 
•  Highly Volatile 
•  σm>3% 

• Transitional 
•  Moderately Volatile 
•  (1%  >  σm  <  3%) 

6/4/12 15 Geographic Diversity and Intermittency in Distribtued PV 

Hypothesis: Generation can
be described as a mixture of
models

It is easy to imagine that
cloud cover “regimes”
determine distributions

But we don’t directly
observe cloudiness

The figure shows eyeballed
categorization

But we’d like to estimate
regimes endogenously
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Renewable production models

Decomposition

Automatic generation
control (AGC, a.k.a.
regulation):

5 min average
minus raw data

Load following (LF)

hour average minus
5 min average

Using averages ignores
forecast error

Will add forecast
error in future

Linear operations →
do statistics on indiv.
parts, add them later
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Renewable production models

Observations, hidden states and parameters

... ...

y
1

y
2

y
3

y
t

y
T

v1 v2 v3 vt vT

w1 w2 w3 w
t

w
T

Wt,k ∈ {1, 2, . . .K} , exogenous data inputs

Yt = vector of measured AGC or LF requirements

at each site

vt = “hidden” volatility state of the AGC or LF metric
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Renewable production models

The model: equations to estimate

Define YCL,t as the AGC or LF requirement due to clear sky variation only.

Assume that the variability at a network of sites is multivariate Gaussian:

Yt ∼ MVG (YCL,t ,ΣY (vt ;φ)) · max
t∈HE

CLt

Σ is conditionally dependent on

the volatility state of each system, vt ,

a geographic autocorrelation function ρm,n

ρm,n(di ,j ;φ) = am,n · exp {−di ,j/τm,n}

where m and n are any two hidden volatility states and
φ = {a, τ}
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Renewable production models

Estimating the model

1 Estimate vt , σ and P(vt,n = j |vt−1,n = i ,Wt,m = k) using hidden
Markov models with a fixed number of states vt .

All data in a region used to find the parameters – so an estimated
model applies to an entire region
Estimate via expectation-maximization
Fit the HMM using a transition matrix that is conditional on the input
state from Wt .

2 Fit am,n and τm,n for each pair of volatility states using a weighted
least squares regression
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Renewable production models

Identifying volatility states

normalized fluctuation data, one model for each of 2-7 hidden 
volatility states (! = 2, to ! = 7). 

More states in a model will always result in a higher log-
likelihood of the data to which the model is fit. To correct for 
this effect, the EM algorithm is run on data from 75% of days 
with collected data, referred to as the “model data” (selected 
randomly). The resulting model parameters are then tested 
using the withheld 25% of data, referred to as the “test data.” 
The log-likelihood of the test data is used to measure the 
appropriateness of a model without risk of over-fitting.  

C. Data differencing and normalization 
The PV generation for each system is differenced to 

represent rapid 1-minute fluctuations, shown in Equation 3 
where !! !  is the PV generation time-series for the !!! 
system.  

 Δ !! ! = !! ! + 1 − !!! !  (3) 

The differenced signal is then normalized using the clear 
sky generation signal, which is the generation that would have 
occurred in the absence of clouds at each PV system. The 
clear sky signal is denoted !!! for the !!! system and is 
calculated at each minute using a solar/earth geometry model, 
the geographic location and the geometry of each system 
(given in SolarCity®’s metadata), and a de-rating factor of 
0.77. Each generation signal is normalized by subtracting the 
clear sky signal (before differencing) and then dividing by the 
hourly maximum of the clear sky signal, shown in Equation 4. 

 !!,! = ! !! ! !!!! ! !
!!"#$%& !!! ! ! (4) 

Dividing by the hourly maximum controls for diurnal and 
annual changes in average output that affects the overall 
magnitude of each fluctuation, it also controls for the total 
installed capacity of each system. Subtracting out the 
differenced clear sky signal controls for sub-hourly non-
random diurnal effects as the sun rises in the morning and sets 
in the evening without significant random behavior.   

IV. HMM RESULTS 
Results from model fitting indicate that the log-likelihood 

of HMMs (using the withheld “test” data) continues to 
increase for all locations as the number of states are increased 
from 2 to 5, shown in panel A of Figure 2. indicating that 
these models are not over-fitting. For models with 6 or 7 
states, the log-likelihood of the test data does decrease for 
some systems, indicating that over-fitting may occur. We 
desire as sparse a model as possible while still achieving 
appropriately Gaussian emissions and not over-fitting, thus we 
select an HMM with 5 states. Panel B of Figure 2 displays the 
generation data from an afternoon in SJ overlaying the most 
likely hidden states predicted by an HMM with 5 states.  

For all HMMs fit to the normalized data, the means of all 
emission densities are effectively 0; the volatility states 
instead capture changes in the emission variance. From here 
on, we label states in order of variance, where state 1 has the 
lowest variance and state 5 has the largest. Figure 3 shows 

boxplots for the variance of emissions in each state for all 
inverters stratified by location. The variances of each state 
differ by orders of magnitude, ranging from 10!!, to 
10!!.!The most important volatility state is arguably state 5 
where the variance is the highest. This is because these large 
fluctuations will have the greatest effect on the power system. 
We find a large spread of estimates for the variance of state 5, 
ranging from 5 to 10% of hourly maximums in SJ and LA, 
and ranging from 5 to over 20% in CV.  

 
Figure 2.  (A) Percent increase in log-likelihood of test data given HMMs 
with M states versus M-1 sates; boxplots represent the distribution among all 
systems in all locations. (B) Example of volatility states and measured PV 
generation for a system in San Jose (M=5). 

 
Figure 3.  Distribution of the emissions variances for HMMs fit to each 
system in the dataset. Results are stratified by region.     

The distributions of fluctuations within each volatility state 
are tested using pseudo-residuals. Pseudo-residuals are 
calculated by taking the model-predicted cumulative density 
function (CDF) of the residuals and then taking the standard 
normal inverse CDF of the result. If the model distribution is 
accurate, the pseudo-residuals should exhibit a standard 
normal distribution. We use pseudo-residuals to combine 
residuals from all inverters, however we still present separate 
results for each hidden state as well as for the model data and 
the test data.  

Figure 4 shows quantile-quantile (QQ) plots of the pseudo-
residuals (y-axis) versus the standard normal (x-axis). If the 
emission distribution for the HMM is Gaussian, the quantiles 
will be equivalent and points should lie along ! = !, shown in 
dashed red. QQ plots are equivalent to a direct comparison of 
an empirical CDF to a Gaussian CDF, however they 
emphasize disparities in distribution tails that are otherwise 
hard to see. For example if the empirical and standard-normal 
quantiles are equal for a standard-normal value of 4, then the 
model accurately predicted the boundary for events with less 
than a 0.003% chance of occurring.  

Figure 4 shows QQ plots for all inverters in all locations. 
For state 5, Gaussian distributions appear very accurate for 
both the model data and the test data, quantile comparisons lie 
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Renewable production models

Model validation (all models 5 state)
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Renewable production models

Application (7) Data on small spatial and temporal scales

0 3 61.5 km

Legend

With Consistent Data (Summer)

Selected Inverters, June 12 2012

All Inverters

0 4 82 km

Legend

With Consistent Data (Winter)

Selected Inverters, Jan. 2012

All Inverters

Instantaneous voltage and current from small
(< 15kW) installations, once per minute.

∼50 systems in three 256 km2 areas

256 km2 ∼ smallest spatial area for energy
markets.
Systems selected to give stratified sample of
distances between pairs of locations &
geographical random sampling.

Will use to create small spatial scale model
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Renewable production models

Application (7) What should be the exogenous inputs?

Instantaneous voltage & current
from ∼7,000 sites throughout
CA, every 15 min.

Condition short time scale
volatility model with discrete
indicators of 15 minute volality

Use these 15 minute data to
predict statewide impacts for
geographies and times for which
we have no short time scale data
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Renewable production models

Application (7) What balancing capacity do we need in the
future?

Basic approach

Divide regions of state with 15 minute data into 2km by 2km cells

This covers 40% of California’s population

Use the 15 minute data point closest to the centroid of each cell as
inputs to simulate the HMM model

Investigate the following PV arrangements:

Distributed : small-scale PV (several kW) located behind the meter
Centralized : concentrate all PV in region of the state with the best
resource

Make AGC and LF predictions for PV penetration of 6 and 12 GW
(CA’s 2020 goal)
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Renewable production models

Application (7) Results: Capacity required to balance PV
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Centralized PV systems
more than double
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much more!
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impact on larger scales
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Contrast to NREL
3+5 rule
But most is
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variability) →
challenge lies in
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Renewable production models

Application (7) Hourly Results
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Renewable production models

Outline

Physical load models

Introduction

Individual TCLs – Stochastic differential & difference equations

Aggregations of TCLs – ARMAX, PDE and state space formulations

Whole building models – Stochastic differential equations

Whole building models – disaggregation with smart meters

Renewables production models

Capturing solar PV variability
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Supplementary

Supplemental slides
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Supplementary

Application (2): Energy arbitrage Mathieu, Kamgarpour et al

TPWRS (forthcoming)

θik+1 = aiθik + (1− ai )(θia,k −mi
kθ

i
g) + εik ,

mi
k+1 =





0, θik+1 < θi−,

1, θik+1 > θi+,

mi
k , otherwise

y ik = mi
k

P i
trans

ηi
= mi

kP
i ,

mi
k+1 =





0, θik+1 < θi− or

θik+1 ∈ [θi−, θ
i
+] and ξik = 0

1, θik+1 > θi+ or

θik+1 ∈ [θi−, θ
i
+] and ξik = 1

mi
k , otherwise.

k indexes time

ξ is a new control variable
(see next slide)

ε is Gaussian noise
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Supplementary

Interpretation, caveats and next steps

Interpretation

Distributed PV may have no impact on LF and AGC requirements
beyond (forecastable) clear sky variation.

Contrast: Centralized PV may require 2 GW of capacity

This works out to double earlier estimates

Caveats, next steps

We have only looked at requirements from PV, but system operators
balance net load.

Next step: Add model of short time scale load and wind variability

The estimates are upper bounds assuming a perfect forecast

Next step: Add forecast error model (will increase the estimates

How well does the need for solar balancing correlate with DR
resource?

Next step: Smart meter data analysis to characterize resource
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