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Introduction

Name that process (1)
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Name that process (1)
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Time of day on Jul 07, 2011

1 second solar production from 1 to 15 residential PV systems in California
(data from SolarCity)
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Name that process (2)
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Name that process (2)
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1 second wind production at 100 MW wind farm in MN (courtesy Yi Wei
Wan, NREL)
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Name that process (3)
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Name that process (3)
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15 minute average electricity consumption from individual building (x-axis
= hours, y-axis = kW) (Mathieu et al Energy and Buildings, 2011)
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Name that process (4)
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Introduction

Name that process (4)
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Name that process (5)
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Introduction

Name that process (5)
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Early question: what drives variability in wind, solar,
electricity demand?
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Introduction

Early question: what drives variability in wind, solar,
electricity demand?

@ Weather

e diurnal, annual periodicity

o free convection, turbulence — chaos
o People

e diurnal, annual periodicity
e Random fluctuations in when people do things: turning on light
switches, plugging in car, etc.
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Introduction

How do all these things come together?
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How system operators think about variability & uncertainty

Regulation Actual
Load

Hourly
Schedule

; 5Minute
Schedule

Economic Dispatch (Load Following)

'(source: CAISO)

@ System operators dispatch generation to follow 5 min schedules and
provide frequency control

@ More renewables = more variability and uncertainty. What to do?
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Tools for managing variability and uncertainty
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Tools for managing variability and uncertainty

o Better (or different) forecasts
@ New technologies for ramping quickly

o Faster generators
e “demand response”
e storage

@ New market structures that provide financial compensation for faster

generators.
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Tools for managing variability and uncertainty

o Better (or different) forecasts
@ New technologies for ramping quickly

o Faster generators
e “demand response”
e storage

@ New market structures that provide financial compensation for faster
generators.

Focus of the lecture:

@ Survey some methods for describing load and renewables variability
@ Put them in the context of applications
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Outline

Physical load models
@ Introduction
@ Individual TCLs — Stochastic differential & difference equations
°
@ Whole building models — Stochastic differential equations
@ Whole building models — disaggregation with smart meters
Renewables production models

o Capturing solar PV variability
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Physical load models — Introduction

A framework for categorizing loads (cf Lijun Chen et al
2012

© Energy-constrained tasks

o Dishwasher, dryer
e EV charging

@ Thermostically controlled loads (TCLs)
o Refrigeration, water heating, space conditioning

These can be modeled with an internal energy state
@ Energy over time defines the performance of the load
@ Can turn on or off without impacting overall performance of the load.

@ ...so they are good for load shaping
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A framework for categorizing loads, ctd

© Loads that support other basic activities
o Lighting, elevators

@ Loads that are the activity
e Computers, video games, televisions.

Depend on instantaneous power consumption
@ Turning them ON or OFF means electricity consumers go without

@ They are also much harder (if not impossible) to model from a first-principles
perspective

@ We'll leave them out of further discussion.
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What | will and won't talk about

Load modeling has two major veins:
© Those that focus on describing how real power varies in time in order

to serve end-use functions

@ Those designed to describe dynamics of the loads as a function of
power system state variables (frequency, voltage...).

e lan Hiskens spoke about this on Monday.

I'll focus on #1 and not #2.
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Outline

Physical load models

Introduction

Individual TCLs — Stochastic differential & difference equations
Aggregations of TCLs — ARMAX, PDE and state space formulations

°
°
°
@ Whole building models — Stochastic differential equations

@ Whole building models — disaggregation with smart meters

Renewables production models

o Capturing solar PV variability
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Physically based TCL models

Ihara and Schweppe (1981) posed an early conceptual and mathematical
model of TCLs

]
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Their interest was in describing the phenomenon of “cold load pickup”
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Physical load models — Individual TCLs

TCL models as hybrid state deterministic ODEs (lhara and
Schweppe 1981)

N Heater
Actuation

- - Heat On

Heat Off

- -
-

-
Temperature

(as shown here, this is a
heating model)

In this model, power changes due to ON/OFF switches and average power
over time changes due to varying ambient temp.
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Physical load models — Individual TCLs

TCL models as hybrid state deterministic ODEs (lhara and

Schweppe 1981)

do;(t
G dg ) = —R; (9,‘(1‘) — 93) + m,-(t)P,-
0, 9,‘(1’) > 9,‘7_;,_
m,-(t) = 1, 0,-(t) < 9,’7,
mj(t), otherwise
0;(t) = temperature of ith load
m;(t) = OFF/ON state of the load € {0,1}
B = ambient temp

N Heater
Actuation

- - Heat On

Heat Off |_
-

-
Temperature

(as shown here, this is a
heating model)

= thermal capacitance
= thermal resistance
= themostat limits

In this model, power changes due to ON/OFF switches and average power

over time changes due to varying ambient temp.
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Model performance (lhara and Schweppe 1981)

T(F) ® X + MEASURED

s MODE L
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Physical load models — Individual TCLs

Application (1): Cold load pickup — thousands of loads'
aggregated power (lhara and Schweppe 1981)

TIME IN MINUTES
L 1 1
-50 0 50 100

Parameters drawn from Gaussian distribution. Which has the largest
standard deviation on the distribution?
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Physical load models — Individual TCLs

Application (1): Cold load pickup — thousands of loads'
aggregated power (lhara and Schweppe 1981)

TIME IN MINUTES
L 1 1
-50 0 50 100

Parameters drawn from Gaussian distribution. Which has the largest
standard deviation on the distribution? Ans: (3). Diversity damps

oscillations.
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TCL models as hybrid state stochastic ODEs (Malhame

and Chong TAC 1985)
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o & E DA
D. Callaway (UC Berkeley) Stochastic Models



Physical load models — Individual TCLs

TCL models as hybrid state stochastic ODEs (Malhame
and Chong TAC 1985)

G decljit) =—R; (9,’(1.’) — 93) + m,'(t)P,‘-l-W,‘(t) | toser
0, > 0; —+ - ) Heat On
1, < 0 - Heat Off
m;(t), otherW|se = O mperaure
N 1 (as shown here, this is a
Z fP, m;(t heating model)
/:1
0;(t) = temperature of ith load C; = thermal capacitance
m;(t) = OFF/ON state of the load € {0,1} R; = thermal resistance
w;(t) = noise P; = power to ON load
y(t) = total power consumed (after conversion losses)
n; = conversion efficiency 0;+ = themostat limits
f#, = ambient temp
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What's the noise for?

Motivating examples
o Weather
@ Opening / closing windows and doors
@ Internal heat gain driven by occupants
Practical reasons
e Facilitates a very nice aggregation approximation (more to come)
e Facilitates estimation via Kalman filter (more later)
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Application (2): Receding horizon control Mathieu,

Kamgarpour et al (forthcoming)

ko+Np

min h leyi
ge=z kg; k

Converting to discrete time:

s.t. TCL dynamics

h=time step,
Iy = energy price,

& = overrides local ON/OFF control (only within deadband)
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Physical load models — Individual TCLs

Application (2): Receding horizon control Mathieu,

Kamgarpour et al (forthcoming)

Converting to discrete time:

Saves 5-35% of energy costs

without disrupting comfort.
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Outline

Physical load models

Introduction

Individual TCLs — Stochastic differential & difference equations
Aggregations of TCLs — ARMAX, PDE & state space formulations
Whole building models — Stochastic differential equations

@ Whole building models — disaggregation with smart meters
Renewables production models

o Capturing solar PV variability
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Exploring perturbations to thermostatically controlled loads

(TCLmovie)
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TCLmovie.mpeg
Media File (video/mpeg)


How to describe the dynamics of the aggregation?

Option 1: Simple time series model

A(q)yk = B(q)uk + C(q)ek

In this case, y is aggregate power, u is temperature setpoint change.

4

21

I i i gl

-2 “ theoretical model (fit = 93.4%)
ARMAX model (fit = 95.1%)

0 2 4 6 8 10

time (h)

Problem: Model doesn't track system states (internal temp) and performs
poorly if perturbations are large.

D. Callaway (UC Berkeley) Stochastic Models January, 14 2015 25 / 65



But aren't there better ways to describe the aggregation?

Option 2: PDE models

Heater
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But aren't there better ways to describe the aggregation?

Option 2: PDE models

[ on wmm off approx. M&C solution]
Heater ? a b c
Actuation -
- - z| i
=) mm)— Heat On 3 55[
3
o
Heat Off | P - (%
A " Temperature Temperature (6)
@ Population can be modeled
as a pdf in temperature
@ Fokker-planck coupled PDEs 2 g2
ibe dynamics 9 =2 [(&(0(t) = 02)) o] + 5
describe dynamics t g
. . . fi
o Derivation via % :% [(&(G(f) —0a) + %) fl}
Chapman-Komogorov I o & ¢
o Requires load 2 9671

homogeneity, stochastic
differential equation for
derivation.

(Malhame & Chong, TAC '85)
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Fokker-Planck approximation solution

@ Non-stationary solution eigenvalues will determine how quickly
disturbances decay to steady state.

e unable to find nonstationary solutions under M&C assumption of
constant indoor temp
@ However, the original system can in fact be solved by separation of
variables (f(0,t) = ¢(f)e™*t) and the series method. The result:

\ on off exact solution approximate solution \

probability density

0- 0+ 0- 0+
temperature
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Application (3): PDEs yield insight into the dynamics
(Callaway '09)

Nonstationary solution to the
homog. PDE with noise has
modes with eigenvalues
k
Ak =—,k=0,1,2..
KT CR
= if CR (thermal time constant)
is small enough, steady state
distribution informs control

e Figure: control law based on
steady state approximation

@ Result: small setpoint
change — large, accurate

response
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Physical load models — Aggregations

Application (3): PDEs yield insight into the dynamics

(Callaway '09)

Nonstationary solution to the
homog. PDE with noise has
modes with eigenvalues

k
A =—,k=0,1,2...
k CR7 5+

= if CR (thermal time constant)

is small enough, steady state
distribution informs control

e Figure: control law based on

steady state approximation

@ Result: small setpoint
change — large, accurate

response
D. Callaway (UC Berkeley)
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Challenges to the Fokker-Planck approach

@ Incorporating parameter heterogeneity
@ Available control tools relatively small

@ System identification tends to be computationally intensive.
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Physical load models — Aggregations

A more flexible framework

Option 3: State space models

ON

state

OFF

normalized temperature

x(k +1) = Ax(k) + Bu(k)
y(k) = Cx(k)

(Liu & Chassin, TPWRS '05; Bashash & Fathy
TCST '12; various Callaway pubs.)
D. Callaway (UC Berkeley)

Stochastic Models

x = fraction of TCLs in each bin
A = state transition matrix
y = system output: aggregate

power only, or power and all x
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Physical load models — Aggregations

A more flexible framework

Option 3: State space models

ON

state
P

OF

&1

normalized temperature

x(k +1) = Ax(k) + Bu(k)

y(k) = Cx(k)

(Liu & Chassin, TPWRS '05; Bashash & Fathy

TCST '12; various Callaway pubs.)
D. Callaway (UC Berkeley)

- 0 -
0 -1
5 10 1
L1 0 |

Stochastic Models

x = fraction of TCLs in each bin

A = state transition matrix

y = system output: aggregate

power only, or power and all x

u = Myn/2 x 1, switch OFF/ON
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Physical load models — Aggregations

A more flexible framework

Option 3: State space models
x = fraction of TCLs in each bin

A = state transition matrix

ON
y = system output: aggregate
power only, or power and all x

state
«—

OFF

u = Myn/2 x 1, switch OFF/ON

normalized temperature

T 0
x(k + 1) = Ax(k) + Bu(k)
0 -1
y(k) = Cx(k S D
(k) (k) B . :
(Liu & Chassin, TPWRS '05; Bashash & Fathy 1 0

TCST '12; various Callaway pubs.)
D. Callaway (UC Berkeley)
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State space models: Opportunities

@ Can derive model analytically from heterogeneous SDEs (Mathieu et al
TPWRS '13, Kamgarpour et al IREP '13)

@ Simple to model a variety of control signals

o Kalman filtering yields states; nonlinear filter can deliver parameters
(Mathieu et al TPWRS '13)
@ Wide array of control tools apply for this and similar models:

o MPC (e.g. Mathieu TPWRS '14)
o LQR (e.g. Kundu et al PSCC '11)
e Sliding mode (e.g. Bashash and Fathy TCST '12)

@ Alternatives to get to LTI plant model: aggregate step function
laplace transfers and invert (Kundu et a/l PSCC '11)
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Physical load models — Aggregations

Application (4) What communication and sensing
equipment do we need? (Mathieu et al TPWRS 2013)

Reference case: Meter power and temperature at all controlled loads,
error following dispatch signal = 0.6% RMS (smaller is better)

Case 1: Meter the ON/OFF state at all loads, measure aggregate power
at the distribution substation. Result: error = 0.76% RMS

Case 2: Meter only aggregate power at distribution substation. Result:
error = 5% RMS (this compares favorably to conventional generators)

substation power “

_ _ consumption
™
|
| broadcast
(( ! )) control to
ECDRs

(c.f. Mathieu et al TPWRS '13)
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Centralized control via state space models: Open problems

consumption

substation power l

-

I

| broadcast

(( ! )) control to
ECDRs

@ State space model is time-varying; depends on outdoor temperature
and occupancy (Mathieu et al ECC13), but more work needed

@ What is the process noise covariance? Abstraction methods can
address (Soudjani and Abate, TCST'14); more work needed

@ Parameter heterogeneity (Mathieu et al TPWRS '13, Kamgarpour et al
IREP '13). Very few satisfying answers here!

o Filter observer error can depend on forecast of uncontrolled loads =
short term, small spatial scale forecasts needed.

o Validation!
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Outline

Physical load models

Introduction

Individual TCLs — Stochastic differential & difference equations
Aggregations of TCLs — ARMAX, PDE and state space formulations

Whole building models — Stochastic differential equations

@ Whole building models — disaggregation with smart meters
Renewables production models

o Capturing solar PV variability
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Physical load models — Whole buildings

Modeling total customer load as an SDE

Customer energy consumption: e] is the total energy consumption up
to time t by customer i

=

Sl

energy (kWh)

Ny}

del = (Ii(t)+ul)dt+6;(t)dW,

(more validation to come)

Load state dynamics: dxi = fi(xi, ul)dt

Example: First order temperature dynamics for air conditioning
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Electricity price dynamics also modeled as SDE

@ )\ Electricity price in the real-time market (LMP)

@ mean-reverting model [peng, Johnson, Sogomonian, DSS, 2001], [Kamat, Oren, OR, 2002]
dX\r = ro(v(t) — In Ap)Aedt + oo (t) AedWP
@ change of variable = linear model
dw; = ro(v(t) — wy)dt + oo(t)dW?

e data (ERCOT LMP) vs. identified model

0. 0.

04t q 04t
Zo3r 1 @o3r
o o
302 4 So0.2-
813 1 (AT AN

15 16 17 18 0 11 12 13

14 15 16 17 18
time (h)
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Physical load models — Whole buildings

Application (5): Financial Risk-Sharing with Risk-Limiting
Dynamic Contracts (Yang, Callaway, Tomlin Allerton '14)

Fixed Risk-Limiting Real-Time
Price Dynamic Contract Pricing
!— ------------- ! !
low risk risk-limiting high risk
to customers capability to customers

Key ldea: Direct load control + Contract

Goal:
o Capture the benefits of real time pricing

@ But also manage concerns over risk
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Application (5): Risk management: price volatility

Energy price is high and volatile from 4pm to 5pm:

0.5 T

T T T

T T

T

0.4t
Foat
o
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01t

!

= n
0 11 12 1 14 15
time (h)

Result: Precooling under contract
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time (h)
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g 21t
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10 11 12

14 15 16 17 18
time (h)
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Physical load models — Whole buildings

Application (5): Comparison to customer optimal control

@ optimal control with no contract

max  E[JA[u/]]
u' e’

subject to dX{ = f;(X{, Ué)dt:

@ nominal mean and
variance:
b= E[JA[u"],

S = Var[JA[u*]

@ contract with
(b,S) = (b, pS)

@ Blue line: control law
(from model) applied
against actual price
and load data

D. Callaway (UC Berkeley)

10 T T T T T T T
—model —data
4 Utility risk reduced 95% at 0.2 ratio 1
b Real time costs reduced 2% J
=2 ,
1 J
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p (ratio)
0.01 T T T
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_. 001 g
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0.005r
0 005 0.1 015 02 025 03 035 04 045 0.5
p (ratio)

Stochastic Models

January, 14 2015

39 / 65



Outline

Physical load models
@ Introduction
@ Individual TCLs — Stochastic differential & difference equations
o Aggregations of TCLs — ARMAX, PDE and state space formulations
o

Whole building models — Stochastic differential equations

@ | Whole building models — disaggregation with smart meters

Renewables production models

o Capturing solar PV variability
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Physical load models — disaggregation

Smart meters

@ Provide whole building electricity consumption on 15- to 60-minute
intervals.

@ Can they be used to identify customers for demand response, or to
issue commands for demand response?

@ Major target for demand response: air conditioning.

[m] = =
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Key challenge: WHEN is air conditioning operating?

Daily averages

6
T

(dailgr average)
T

kW

2
T

60 80
mean T (degs F)
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Key challenge: WHEN is air conditioning operating?

Hourly averages

Daily averages
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Physical load models — disaggregation

Model
W; = hourly average power
24
~ Z[Hrhﬁt(weekdayt’yh + weekenddp)]
h=1
+Ct(n + S max(0, T — CP))
Known:

Hrp ¢, weekday; and weekend,: indicator variables
T, outside air temperature

To estimate:
~vn and dp: hourly fixed effects

1 and 3 determine cooling intensity

C: € {0,1} and CP: cooling ON/OFF status and “change point”
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Model performance

f) R squared= 0.94 - .
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Physical load models — disaggregation

Estimating the model

It's easy to estimate this model IF C; and CP are known.

Estimating CP: Standard method (ASHRAE inverse modeling toolkit) is
to choose best model in a plausible range of CPs.

° Log likelihood and R squared v Hourly data
2 _|° ¢} o [¢} SRS
©
% B
. s 7]
o [e]
8 | o 3R <
. 0 -
S o Eﬁ £
o (=}
1<} |
s ol N
© O ©
! o
g |° 3
2 Q| o o
@ T T T T T T T T T
55 60 65 70 75 85 30 40 50 60 70 80 90 100
changepoint °F outdoor °F
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Estimating the model

It's easy to estimate this model IF C; and CP are known.

Estimating CP: Standard method (ASHRAE inverse modeling toolkit) is
to choose best model in a plausible range of CPs.

° Log likelihood and R squared v Hourly data
E _|° ¢} o [¢} SRS
@ @ o
I —
. s 7]
o [e]
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8 : fe
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2o o Eﬁ £
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g8 |° -2
2 Q| o o
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55 60 65 70 75 80 85 30 40 50 60 70 80 90 100
changepoint °F outdoor °F
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Estimating the model

It's easy to estimate this model IF C; and CP are known.

Estimating CP: Standard method (ASHRAE inverse modeling toolkit) is
to choose best model in a plausible range of CPs. We adapt this by
maximizing likelihood:

. 2 —
N(et,O,a )(fclg/f>CP) Ct =1
_ . 2 —
Lt = N(et, 0,0' )(]_ — fclg/f>CP) Ct = 0, Tt > CP
N(et;0,02) T, < CP
Log likelihood and R squared v Hourly data
8 [ o o o S o !
5
¢ ] e 8 o
g ° o g -
- $ °© a° =2
o ] 3 o S
g “t -
5 o 8
I o a
g |o 2
e 4 0| o o
©
! 5‘5 6‘0 6‘5 7‘0_ 7‘5 8‘0 8‘5 3‘0 4‘0 50 60 7‘0 80 90 1(‘)0
changepoint °F outdoor °F
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Physical load models — disaggregation

Estimating the model

It's easy to estimate this model IF C; and CP are known.

Estimating CP: Standard method (ASHRAE inverse modeling toolkit) is
to choose best model in a plausible range of CPs. We adapt this by
maximizing likelihood:

J\/(et; 0702)(fclg/f>CP) Ct =1
L = N(e;0,0%)(1 — fag/fscp) Ce=0,Ty > CP
N (et 0,02) T.<CP

To determine C; we follow an approach analogous to k-means clustering

@ Make an initial guess for which hours are C; = 1, which C; = 0.

@ Estimate the regression equation with the likelihood function

© Calculate residuals for points with T; > CP using cooling and
non-cooling models. Re-assign C; if the other model fits better.

@ Repeat Steps 2 and 3; exit when assignments change by <0.5%
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Physical load models isaggregation

model performance

Typical results:

) Rsquared= 0.86

0

d) R squared= 0.89

T
60 70 80 90 100

e) Rsquared=0.84

10

Average hourly kW

f) R squared= 0.94

Callaway (UC Berkeley)

Stochastic Models

January, 14 2015
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Physical load models — disaggregation

Application (6) Exploring the demand side resource (Dyson
et al 2014)

PG&E sampling zones (10,000 accounts each) Meter count by zip code

4 per zip code
[0,5)

(5,40)
[40,80)
[80,120)
[120,160)
[160,200)
[200,240)
[240,302]

- Central Valley
. Coast
]

Inland Hills

o F
D. Callaway (UC Berkeley)
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S
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Physical load models — disaggregation

Application (6) Exploring the demand side resource (Dyson
et al 2014)

PG&E sampling zones (10,000 accounts each) Meter count by zip code

# per zip code
[0,5)

(5,40)
[40,80)
[80,120)
[120,160)
[160,200)
[200,240)
[240,302]

Central Valley
Coast
Inland Hills

Key questions:

@ How do AC setpoint shifts change demand (instantaneously, steady
state)?

@ How do these changes in demand correlate with renewables? = = oo
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Computing potential

f) R squared= 0.94 - .
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Computing potential

f) R squared=0.94 - .

- "
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o - : L Lot

" steady state "
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| | | | | | |
40 50 60 70 80 90 100
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Computing potential

f) R squared=0.94 - r
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Physical load models — disaggregation

Application (6): Making the case for targeting customers
for DR

...a large fraction of the resource is in a small fraction of customers.

1000
I

The result is for the
PG&E sample (30,000
customers; total
PG&.E is roughly
150x larger)

800
1
5% of homes: 41%
of total resource

MW-hours of DR availability
400 600
1 1

20% of homes: 89%
35% of homes: 100%

200
1

0
1

T T T T T T
0 2000 4000 6000 8000 10000

MW-hour is the sum of MW available in each hour of the year if buildings
increased their temperature setpoints by 4 degrees. (Note this is about

13% of annual electricity consumed for cooling.)
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Physical load models — disaggregation

Application (6) Does the resource correlate with solar

ramps?

Comparing summer solar ramps to DR availability (scaled to all PG&E)

L I e
SRS )
s b - L 8
g v | ﬁl N
E | | |
. @ai** . :
o |
o -1 -+ —
g~ = RN S
> | |
: — LQQ—S
2 = =

Lo—

S\ l l l I I I I

13 14 15 16 17 18 19 20 21 22 23

Hour beginning
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Physical load models — disaggregation

Application (6) Does the resource correlate with solar
ramps?

Comparing summer solar ramps to DR availability (scaled to all PG&E)

0%
|

| TTéT%____
| = ET
Eﬁ“ 4

-5%
|
200

Steady-state DR resource, MW

-15%
1
'_
100

Hourly insolation ramp, %/hr
50

-25%
|

-
|
|
5 - Q -
|
== - T8
| T T T T T T
13 14 15 16 17 18 19 20 21 22 23
Hour beginning

Resource not as big in spring, when net load ramp, may, be worst.
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Application (6): Instantaneous vs. steady state

The instantaneous resource is much larger than the steady state resource

o - — Instantaneous curtailment potential
— = 1-hour average reduction with 4°F setpoint change

GW
2
|

o - ~--..n-o.----.----u.u--..-...__ —eee = ==

I I I I I I
0 1000 2000 3000 4000 5000

Hours
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Outline

Physical load models
Introduction
Individual TCLs — Stochastic differential & difference equations

Whole building models — Stochastic differential equations

Whole building models — disaggregation with smart meters

Renewables production models

o | Capturing solar PV variability

D. Callaway (UC Berkeley) Stochastic Models January, 14 2015

Aggregations of TCLs — ARMAX, PDE and state space formulations
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Solar Volatility

4
35 ]
3 o, | Hypothesis: Generation can
2.5 AN | be described as a mixture of
s, A} | models
m \
% 15 ] @ It is easy to imagine that
© ] cloud cover “regimes”
05 //J ] determine distributions
o : @ But we don't directly
Taniton observe cloudiness
Cloudy | emm— - 1 The figure shows eyeballed
P.Cloudy —_— 1  categorization
S:::: | @ But we'd like to estimate

9:00 12:00 15:00 18:00

Time of day onJul 11, 2011 reglmes endogenously
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Decomposition

@ Automatic generation
control (AGC, a.k.a.
regulation):

e 5 min average
minus raw data
e Load following (LF) MW

e hour average minus
5 min average

Hourly

o Using averages ignores
forecast error

o Will add forecast
error in future

Schedule

5-Minute
Schedule

Economic Dispatch (Load Following)

@ Linear operations —
do statistics on indiv.
parts, add them later

D. Callaway (UC Berkeley) Stochastic Models
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Renewable production models

Decomposition

e Automatic generation s ;VGIE";‘_*‘“"“’;E)() A
—==- Hourly Dispatch, D, (t
Contlr Otl.(A)G C. aka. L — 5-min Dispatch, D_,,(0 .
regulation): i ;
e 5 min average %
o5t

minus raw data
e Load following (LF)

e hour average minus
5 min average

—e— AGC Signal, ny B

Generation \ Demand
IS
n S wno

o Using averages ignores
forecast error 0.5[ —o—Load Following Signal. G, _
o Will add forecast 07 e e
error in future

L L L L L

06:00 07:00 08:00 09:00 10:00
. . Ti fD July 08, 2011
@ Linear operations — e of Ly on

do statistics on indiv.

parts, add them later
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Renewable production models

Observations, hidden states and parameters

w,ow, o w, w w

009 9@

@ @

Y Y Y

A Y

Wk €{1,2,... K} £ exogenous data inputs
Y: = vector of measured AGC or LF requirements

at each site

v = "hidden” volatility state of the AGC or LF metric
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The model: equations to estimate

Define Y+ as the AGC or LF requirement due to clear sky variation only.

Assume that the variability at a network of sites is multivariate Gaussian:
Yt ~ MVG (YCL t,zy(\ﬁ-;gb)) - maXx CLt
’ tcHE

Y is conditionally dependent on
o the volatility state of each system, vy,

@ a geographic autocorrelation function pm, »

Pm,n(di,j; ¢) = am,n - EXP {_di,j/Tm,n}

where m and n are any two hidden volatility states and
¢ = {a7 T}

D. Callaway (UC Berkeley) Stochastic Models January, 14 2015 56 / 65



Estimating the model

@ Estimate v, 0 and P(v¢n = j|ve—1,n = i, Wi, m = k) using hidden
Markov models with a fixed number of states v;.
o All data in a region used to find the parameters — so an estimated
model applies to an entire region
o Estimate via expectation-maximization

e Fit the HMM using a transition matrix that is conditional on the input
state from W;.

@ Fit am, and 7, for each pair of volatility states using a weighted
least squares regression
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|dentifying volatility states

—_
(=}
=2

7 10T A L
20 I
2 i 54 ’ 2
o— - /
i 5 E ; I = L) 5
§ ! Q i i i 62 =4
1= L T 5
1S3 +
0
6 7 10:00 11:00 12:00 13:00
S

M Time of day

Panel A: Percent increase in log-likelihood of test data given HMMs with
M states versus M-1 sates

Panel B: Example of volatility states and measured PV generation for a
system in San Jose (M=5).
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Model validation (all models 5 state)

Volatility state model No latent state model
)
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Application (7) Data on small spatial and temporal scales

Legend
@ With Consistent Data (Summer)
© Selected Inverters, June 12 2012
All Inverters > L
° . 8
o ©
803 °, g
°
0
o®' °© o
o.'8.®
© 8 %
%o
°
0153 6 km o
I |

Legend
o
O @ With Consistent Data (Winter)
e

[3/ . © Selected Inverters, Jan. 2012
» Al Inverters

.0 OOO
o
oo
o e e
o
02 4 _ 8km * e
[

D. Callaway (UC Berkeley)

@ Instantaneous voltage and current from small
(< 15kW) installations, once per minute.
@ ~50 systems in three 256 km? areas

e 256 km? ~ smallest spatial area for energy
markets.

o Systems selected to give stratified sample of
distances between pairs of locations &
geographical random sampling.

@ Will use to create small spatial scale model
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Application (7) What should be the exogenous inputs?

@ Instantaneous voltage & current
from ~7,000 sites throughout
CA, every 15 min.

@ Condition short time scale
volatility model with discrete
indicators of 15 minute volality

@ Use these 15 minute data to
predict statewide impacts for
geographies and times for which
we have no short time scale data

O Counties
O Urban Areas (> 2000 / mi*2
B Cells with Complete Data
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Renewable production models

Application (7) What balancing capacity do we need in the
future?

Basic approach
@ Divide regions of state with 15 minute data into 2km by 2km cells
e This covers 40% of California’s population

@ Use the 15 minute data point closest to the centroid of each cell as
inputs to simulate the HMM model
@ Investigate the following PV arrangements:
o Distributed: small-scale PV (several kW) located behind the meter
e Centralized: concentrate all PV in region of the state with the best
resource
@ Make AGC and LF predictions for PV penetration of 6 and 12 GW
(CA’s 2020 goal)
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Application (7) Results: Capacity required to balance PV

o Centralized PV systems
60% - more than double
so% | requirements
@ Local balancing requires
much more!

30% o AGC a tiny part of the
20% 1 impact on larger scales

40% |

sacc @ Best case: 7% reserve
10% 7 I requirement
o Contrast to NREL
345 rule
o But most is
predictable (clear sky
variability) —
challenge lies in
scheduling ramps

0%

Percent of installed PV capacity

centralized -
distributed -

distributed .

centralized
distributed
centralized

4kmA2
balancing area

state level
balancing

county level
balancing
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Application (7) Hourly Results

Distributed Scenario, 6GW

[\ ]
(=3
(=3
(=}

Max / Min Load
Following Req
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2000}

- 2000f -

g
— &
g2 0
=z i
=3 -
%3 -
> E-=2000f:
7 8 9 10 11 12 13 14 15 16 17 18 19
Hour Ending
tatewide Balancin; m’ Balancing Area
S ide Balancing 4k’ Balancing A
0] County Balancing == Clear-sky requirement
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Outline

Physical load models
@ Introduction
@ Individual TCLs — Stochastic differential & difference equations
°
@ Whole building models — Stochastic differential equations
@ Whole building models — disaggregation with smart meters
Renewables production models

o Capturing solar PV variability

D. Callaway (UC Berkeley) Stochastic Models January, 14 2015
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Supplementary

Application (2): Energy arbitrage Mathieu, Kamgarpour et al
TPWRS (forthcoming)

Okr1 = a0 + (1 = a') (0, x — miby) + €, k indexes time

i i . .

' 0, Ofy1 < 0., £ is a new control variable
miy1 =91 ka1 > 04, (see next slide)

i 1 . . .
my; otherwise € is Gaussian noise
. . pi o
I ] tra:ns — m;(PI’

Y = my 0
§ , ,
0, 1 < 0L or
| €[00 ]and & =0
, ; )
M1 =41, k1 > 04 or

i i i i
ka1 €10-,0 ] and § =1
i .
| m, otherwise.
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Supplementary

Interpretation, caveats and next steps

Interpretation
@ Distributed PV may have no impact on LF and AGC requirements
beyond (forecastable) clear sky variation.
o Contrast: Centralized PV may require 2 GW of capacity
e This works out to double earlier estimates
Caveats, next steps

@ We have only looked at requirements from PV, but system operators
balance net load.

o Next step: Add model of short time scale load and wind variability
@ The estimates are upper bounds assuming a perfect forecast
o Next step: Add forecast error model (will increase the estimates

@ How well does the need for solar balancing correlate with DR
resource?

o Next step: Smart meter data analysis to characterize resource
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