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Costs and benefits

m Total value of power: =~ $400B /year, ~ 2% of GDP
m Value of solar energy in US: ~ $1B/year
m Cost of power interruptions : Z $100B /year

7S 4

Enormous opportunity in reliability improvement
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Power system security

m First 30 seconds are critical for cascade propagation
m Direct human intervention not possible

m Need advanced planning and automatic response
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Power system security

First 30 seconds are critical for cascade propagation
Direct human intervention not possible

Need advanced planning and automatic response
Challenges

» Faster than real-time simulation still a challenge
» Tens of billions of possible failure scenarios
» Advanced mathematical tools are lacking
m Opportunities
» Fast sensing - PMU
» Fast non-local actuation - FACTS/HVDC
» Algorithms and computing power
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Stochastic dynamics

Why stochastic models ?

m Steady states are never reached
m System is inherently stochastic
m More problems in the future:

Intermittent Renewables
Operation closer to stability limits
Microgrids - more variability

More reliance on real-time sensing

vvYwvyy

From: Messina, Inter-Area Oscilla-

tions in Power Systems
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Sources of fluctuations on seconds scale

Some common sources
m Loads
» Switching of power electronics
» Mechanical torque fluctuations in
motors
» Arc furnaces, wood chippers ...
m Generators

» Small-scale turbulence on blades
» Cloud covering panels
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Technologies and Applications

m PMU Sensing

» GPS synchronized

» Real-time sensing and communication
» Sub-cycle pulse sampling

» Thousands units installed in US

Phasor Measurement Units in .
North American Power Grid T \
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Technologies and Applications

m PMU Sensing

» GPS synchronized
» Real-time sensing and communication
» Sub-cycle pulse sampling
» Thousands units installed in US
m Wide Area Monitoring/Control:

» Security analysis, fault detection
» Frequency/voltage control
» Improved state estimation
» Real-time dynamic equivalencing

Phasor Measurement Units in ;
North American Power Grid = \
.
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Disclaimers

Long History of stochastic dynamics of power systems

No general textbooks written

Less research effort than there should be

Works | found interesting /important written by:

» Chris De Marco - first papers on stochastic models in 80s

» Chika Nwanpka - some very advanced methods applied in 90s
» Trudnowski, Messina - stochastic models for signal analysis

» Paul Hines - security indicators, critical slowing down

» Federico Milano - simulations of stochastic power systems
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Stochastic processes

m Probabilistic description is usually a substitute for
modeling dependence on unknown parameters:

» Wind variations depend on velocity distributions outside
» Wood mill power depends on the sequence of logs

m Stochastic process: ensemble of realizations of a
given function x(t)

m Formally, think of x(t,6) with 6 € S - realization of

unknown parameters
m Most important operations on stochastic model:
» Sampling: Generate realizations of the process:
x(t,0,), x(t,0,) ...
» Averaging: Integrate over possible realizations: Y, F{x(t, )}
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Stationary random processes

m Averages of stationary processes do not depend on
absolute time.

m No way to tell if the plot has been shifted in time.

m Time average usually same as ensemble average
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Stationary random processes

m Averages of stationary processes do not depend on
absolute time.

m No way to tell if the plot has been shifted in time.
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Stationary random processes

m Averages of stationary processes do not depend on

absolute time.

m No way to tell if the plot has been shifted in time.
m Time average usually same as ensemble average

Regulation (W)
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Stationary random processes

m Averages of stationary processes do not depend on
absolute time.

m No way to tell if the plot has been shifted in time.

m Time average usually same as ensemble average

ERCOT Lo v. Actual Wind Output /177201 - 8242011

Regulation (W)

BEEEREEE RN
[EEEEEEEEEE]

H‘Jm H' 'M by M'
N ‘.\F‘\ I'U\ 'H\ "\ [
“ v \ " { I S

700 AM 500 A 900 AM 1000 2

Load/Renewable variations: nearly stationary on
seconds/minutes, cyclic on hours/months
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Process characterization

Most common characteristics of random processes
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Process characterization

Most common characteristics of random processes
m Mean value

() = E[x(®] = ) x(t.0})

Kk
m Correlation function:

Rxx(tl’ tZ) = E[X(tl)x(tz)]
m For stationary processes

B, () = const, R, (t;,t,) =R (t; —t,)
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Process example

m Simple example:

x(t) = sin(ot + ¢), ¢ ~ U0, 2x)
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m Simple example:

x(t) = sin(ot + ¢), ¢ ~ U0, 2x)
m Mean value: p(t) = 02” %sin(mt +d)=0
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Process example

m Simple example:

x(t) = sin(ot + ¢), ¢ ~ U0, 2x)

2r d

m Mean value: ut) = /; o

m Correlation function:

Rxx(tl’tZ) = E[X(tl)x(tz)] =

/ g sin(wt; + ¢) sin(wt, + ¢) =

sin(wt+ ¢) =0

1
5 cosw(t; —t,)
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Wiener-Khinchin Theorem

m Fourier transform of the correlation function ...

Sxx(jw) = / Rxx(t) CXp(—j(Dt)dt
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Wiener-Khinchin Theorem

m Fourier transform of the correlation function ...

Sxx(jw) = / Rxx(t) CXp(—j(Dt)dt

m ... is also the power spectral density:
1 T ’
S (o) = Th_)rglo ﬁE [T x(t) exp(jot)dt

m [nstantaneous power:

E[x%(t)] = / g—:sxxgw)
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Higher-order statistics

m Typical processes can be fully characterized via
moments:

E[x(t)) ... x(ty)]
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m Typical processes can be fully characterized via
moments:

E[x(t)) ... x(ty)]

m For Gaussian processes (with zero mean) Wick
theorem holds:
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Higher-order statistics

m Typical processes can be fully characterized via
moments:

E[x(t)) ... x(ty)]
m For Gaussian processes (with zero mean) Wick
theorem holds:

E[x(t) ... x(ty,)] = H E[x(tyi-)x(ty)]

i=1
m Mean and correlation fully define Gaussian process

m Gaussian processes are invariant under linear
transformations
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Process 1: White Noise

m White noise &(t): building block of all random
processes.

m No correlation in time: R, (t) = d(t).
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Process 1: White Noise

White noise &(t): building block of all random
processes.

No correlation in time: R, (t) = &(¢t).

In practice: correlation time smaller than system'’s
timescale.

m Uniform power spectral density: S, (jo) =1
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Process 1: White Noise

m White noise &(t): building block of all random
processes.

m No correlation in time: R, (t) = d(t).

m |n practice: correlation time smaller than system’s
timescale.

m Uniform power spectral density: S, (jo) =1
m Power system context:
» Short surges of power

» Starting of motors
» Vibrations ?
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Example 2: Wiener process

m Brownian walk or Wiener process - integral of white
noise

B(t) = &(1)
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Example 2: Wiener process

m Brownian walk or Wiener process - integral of white
noise

B(t) = &(1)

m Not stationary itself, but with stationary increments

E [(B(t,) — B(;))’| =2D|t; —t,|
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Example 2: Wiener process

m Brownian walk or Wiener process - integral of white
noise

B(t) = &(1)

m Not stationary itself, but with stationary increments
E [(B(t1) - B(tz))z] =2D|t; — 6|

m Power systems context:
» Gradual build-up of power -
» Small on/off switching events
» Better model for short times

4

N
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Example 3: Ornstein Uhlenbeck

m An intermediate model between white-noise and
Wiener process:

’C% = —x + &(t)
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Example 3: Ornstein Uhlenbeck

m An intermediate model between white-noise and
Wiener process:

’C% = —x + &(t)

m Correlation function: R _(t) = exp(—%)
m Power Spectral density

S, (j0) = —

1 + w?t?
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Example 3: Ornstein Uhlenbeck

m An intermediate model between white-noise and
Wiener process:

’C% = —x + &(t)

m Correlation function: R _(t) = exp(—%)
m Power Spectral density
1

R e

m Like Brownian walk on small time-scales ot > 1
m Like white noise on long time-scales ot <« 1
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Linear SDEs

m Linear Time Invariant Stochastic Differential
Equations

L($)y0=xv
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Linear SDEs

m Linear Time Invariant Stochastic Differential
Equations

d
L(-) 0 = x(t
it y(t) = x(1)
m Can be solved via Fourier transform:

_ x(jo) S S (o)
R VETS R e A T

y(o)
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Linear SDEs

m Linear Time Invariant Stochastic Differential
Equations

d
L(-) 0 = x(t
it y(t) = x(1)
m Can be solved via Fourier transform:

_ x(jo) S S (o)
R VETS R e A T

y(o)

m Nonlinear SDEs are more difficult
m Many asymptotic techniques developed in physics
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Power system model

Assumptions for the following discussion:
m Time-scale separation in the system
m Load Dynamics:

» Random build-up of load with long correlations
» Ornstein Uhlenbeck process with T in minutes or longer

m Inter-area oscillations:

» Natural frequency with period ~ 1s
» Underdamped system with relaxation time =~ 5 — 10s

m No voltage and subsynchronous dynamics resolved
m Two-bus and multi-bus models

m Goal: characterize ambient fluctuations

III.
I I Massachusetts Institute of Technology



Two bus model

m Classical example of inter-area oscillations:
P P
Mb, + D8, = — — —=sin(d, — §,) (1)
Wy W

N i P, P
0 0
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Two bus model

m Classical example of inter-area oscillations:
P P
Mb, + D8, = — — —=sin(d, — §,) (1)
Wy W

N i P, P
0 0

m M - aggregate turbine inertia
m D - droop, primary frequency control
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Two bus model

Classical example of inter-area oscillations:
P P
Mb, + D8, = — — —=sin(d, — §,)
Wy W

. . P P
0 0

M - aggregate turbine inertia
D - droop, primary frequency control
P, , - total production/generation levels g

-
o
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Two bus model

Classical example of inter-area oscillations:

MS, + D& —P Poax 5, -9
1 1= (D_o— - sin(d; — d,)

N i P, P
0 0

M - aggregate turbine inertia
D - droop, primary frequency control
P, , - total production/generation levels

P_. - power transfer capacity of the line © ~
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Normal mode variables

m Two normal modes:
> O, = % [61 + 62] - mean angle/frequency of the system
» §,, =9, — 9, relative angle
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Normal mode variables

m Two normal modes:
> O, = % [61 + 62] - mean angle/frequency of the system
» §,, =9, — 9, relative angle

m Governing equations:

MSave + DSave = i [Pl + P2]
o)
o o
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Normal mode variables

m Two normal modes:
> O, = % [61 + 62] - mean angle/frequency of the system
» §,, =9, — 9, relative angle

m Governing equations:

MSave + DSave = i [Pl + P2]
o)
o o

m Independent dynamics
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Linearized dynamics

m For state 5;, = 8}, + 0 close to equilibrium point:

sind%, = (P — P)/P

max

Mb + Db + iPmaIX cos 672] o= ip(t)
o o
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Mb + Db + iPmaIX cos 672] o= ip(t)
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Linearized dynamics

m For state 5;, = 8}, + 0 close to equilibrium point:

sind%, = (P — P)/P

max

Mb + Db + iPmalX cos 672] o= ip(t)
o o

m Power fluctuations p(t) =P, — P10 -PB + on

m Underdamped system:

X
2P0k €08 &), x(t)

» Natural frequency Q =

» Damping rate: y = %

S
VY
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Variability of angle

m For any random process p(t) power spectral density of
the angle difference is given by

Spp(jm) 1

Sss(o) =

= Spp(i(o)T(]'o))
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Variability of angle

m For any random process p(t) power spectral density of
the angle difference is given by

Spp(jm) 1

Sss(o) =

= Spp(i(o)T(]'o))

m Variance of angle fluctuations

E5°] = Rys0) = [ 525,,G00TGo)
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State fluctuations

m Two dominant contributions:

Rs5(0) = / czl—:Spp(iw)T(jm) ~ Spoliw)
R,,(0) Spp )

2 *
4Pmax COS2 6?2 20)0DPmaX COS 612 ‘1/TL w

T(jw)
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State fluctuations

m Two dominant contributions:

do ) ) "
Rs5(0) = / z—nSprw)T(](o) ~ See((0)
R,,(0) . Spp(U€2)

2 *
4PmaX C()S2 6?2 2®ODPmaX COS 612 ‘1/TL w

» Slow drift of operating point
T(jw)
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State fluctuations

m Two dominant contributions:

Rs5(0) = / czl—:Spp(iw)T(jm) ~ Spoliw)
R, (0) Spp ()

2 * *
4Ppax c0s2 8],  20oDPp, cosdy, — w

» Slow drift of operating point
» Resonant excitation of EM modes T(jw)
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State fluctuations

m Two dominant contributions:

Rs5(0) = / czl—:Spp(iw)T(jm) ~ Spoliw)
R, (0) Spp )

2 *
4Pmax COS2 6?2 20)0DPmaX COS 612 ‘1/TL w

» Slow drift of operating point
» Resonant excitation of EM modes T(jw)

m Multi-scale decomposition of d: J\
80 =8 +8(0), €= —— |
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Critical fluctuations

Spp(€2)
2w,DP, ., cos 8],

E[§°] =
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Critical fluctuations

Spp(€2)

E[5°] =
[5°] 2w,DP, ., cos 8],

m EM modes are amplified close to bifurcations:

» Saddle-node bifurcation (loadability limit) for cos 8}, — 0
» Hopf bifurcation for D — 0
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Critical fluctuations

Spp(€2)

E[5°] =
[5°] 2w,DP, ., cos 8],

m EM modes are amplified close to bifurcations:

» Saddle-node bifurcation (loadability limit) for cos 8}, — 0
» Hopf bifurcation for D — 0

m Natural Security indicator (see works of P. Hines)
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Critical fluctuations

Spp(€2)

2w,DP, ., cos 8],

E[§°] =

m EM modes are amplified close to bifurcations:
» Saddle-node bifurcation (loadability limit) for cos 8}, — 0
» Hopf bifurcation for D — 0
m Natural Security indicator (see works of P. Hines)
m Opportunity for better state estimation:

» Deterministic algorithm become inaccurate
» Fluctuations immediately give distance to collapse: cos 87,
» Extraction of directions possible but more difficult
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Simulations of 2 bus system

&
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0.3

0.2
0.1
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Simulations of 2 bus system
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Simulations of 2 bus system

] 5
0.7 35
0.6 30
0.5 25
0.4 20
0.3 15
0.2 10
0.1 5
10 20 30 4‘0 50 t 10

m Swing instability can be triggered by random
fluctuations.

m How do we estimate the probability 7
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Swing probability

(n/2-8%,) ]

m Linear model estimation: P ~ exp [— 6
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Swing probability

(n/2-8%,)
2E[6?]
m Nonlinear result available for white-noise p(t):

1 [_ E(3, )

m Linear model estimation: P ~ exp [—

P==
Zexp T
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Swing probability

' : - /128 )>
m Linear model estimation: P ~ exp [_u]

2E[6?]
m Nonlinear result available for white-noise p(t):
1 E(5, )
P=—=exp|-
Z T

Spp(€2)

» Effective temperature: T = £
oD

I I I -
I I Massachusetts Institute of Technology



Swing probability

(n/2-8%,)
2E[6?]
m Nonlinear result available for white-noise p(t):

1 E(9, 8)
P=—-exp|——
Z T

m Linear model estimation: P ~ exp [—

. S
» Effective temperature: T = 22—

» Similar to particle in potential
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Swing probability

' : - /128 )>
m Linear model estimation: P ~ exp [_u]

2E[6?]
m Nonlinear result available for white-noise p(t):
1 E(5, )
P==exp|—
Z T
Spp(&Y)

» Effective temperature: T = o
0

» Similar to particle in potential
m Natural security indicator - probability of collapse

m Extensions to multi-dimensional case possible
(Podolsky, KT '13)
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Energy function

~2
2 Wy O
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Energy function

:2
2 Wy O

m Kinetic energy of the turbines
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Energy function

<2
E = My _ iPmaxcos6— Ps.

m Kinetic energy of the turbines

m Inductive energy of the lines
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Energy function

<2
E = My _ iPmaXcosé‘)— Ps.

m Kinetic energy of the turbines
m Inductive energy of the lines
m Thermal energy of steam
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Energy function

<2
E = My _ iPmaXcosé‘)— Ps.

m Kinetic energy of the turbines

m Inductive energy of the lines

m Thermal energy of steam
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Energy method

Estimal

ed Stability:

Region

Cl

sest UEP
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~Sws
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m Fast transient stability certificate
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Energy method
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Energy method

Estimal

ed Stability

Region

Cl

sest UEP_—|

I —

v

SEP-

e
v_/

m Fast transient stability certificate
m |f E(8(0),8(0)) < E¢ygp, then 8 = 8, as t = o
m Computing Eqypp is NP-hard problem
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Energy method

Estimated StabilityiRegion
S~ \ Closest UEP_

i S

e
v/

SEP-

m Fast transient stability certificate

m If E(8(0),5(0)) < Ecygp, then 8 — 5, as t — oo
m Computing Eqypp is NP-hard problem

m Certificates are generally conservative
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Collapse probability

m Given equilibrium distribution P ~ exp (—%)

m What is probability of collapse ?
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m Given equilibrium distribution P ~ exp (—%)
m What is probability of collapse ?

. P, ~exp (—%) with AE = Eqygp — E* ~ P, /o,
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Collapse probability

Given equilibrium distribution P ~ exp (—%)
What is probability of collapse ?
AEY . «
P, ~ exp (—?> with AE = Eqygp — E* ~ P, /g

coll

Limit on the frequency fluctuations:

. P )
Mo~ « = R4y
Wy
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Collapse probability

Given equilibrium distribution P ~ exp (—%)
What is probability of collapse ?

P, ~ exp (—%) with AE = Eqygp — E* ~ P, /g

Limit on the frequency fluctuations:

. P )
Mo~ « = R4y
Wy

m For typical systems Af < 1 Hz.
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Frequency fluctuations
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Frequency fluctuations

m Leading contribution from inter-area oscillations:
Spp(€2)
w;DM

E[8%] ~ Q*E[&%] ~
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Frequency fluctuations

m Leading contribution from inter-area oscillations:
Spp(€2)

E[8%] ~ Q*E[&%] ~ -
(DODM

m Average angle dynamics (M§,,, + D§,,. = — [P, + B]):
g

ave

Nﬂ@+gﬁ

ave (DSDZ

Biyed

ave

m Can become very large!
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Frequency fluctuations

m Leading contribution from inter-area oscillations:
Spp(€2)

E[8%] ~ Q*E[&%] ~ -
(DODM

m Average angle dynamics (M§,,, + D§,,. = — [P, + B]):
g

ave

Nﬂ@+gﬁ

ave (X)SDZ

Biyed

ave

m Can become very large!
m Need secondary frequency control to stabilize
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Secondary frequency control

m Simple ACE signal model: P, — P, —ku(t)

a=—=+ O,e = U(t) = / 8,5, (t — T) exp <—£> dr
T 0 T
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Secondary frequency control

m Simple ACE signal model: P, — P, —ku(t)

a=—=+ O,e = U(t) = / 8,5, (t — T) exp <—£> dr
T 0 T

m Slow variations of loads are naturally damped:

e d(,O S p(jw)
SS&VCSQVC = 2 2
0 2mog |D joM

_]T

I I I -
I I Massachusetts Institute of Technology



Secondary frequency control

m Simple ACE signal model: P, — P, —ku(t)

a=—=+ O,e = U(t) = / 8,5, (t — T) exp <—£> dr
T 0 T

m Slow variations of loads are naturally damped:

e d(,O S p(jw)
SS&VCSQVC = 2 2
0 2mog |D joM

_J oT
m Performance metric for Secondary Frequency controls.
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Lecture Outline

m Motivation
m Introduction to Stochastic systems
m Fluctuations in two - bus system

Fluctuations in multi-bus system

m Why Energy methods [are doomed to] fail

» How can we fix them ?

m Lyapunov Function Family for Transient Stability
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Multi-bus model

S A N

. . P
MO, +Dd +—= [sin(§;_; — &) + sin(8,;, — 8, )] = —B;
0, g
Boundary conditions 8, = 8, and &y = Oy,
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Linearized dynamics

m Linearized around steady state:

M§+D§+A§:ipk

®q
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Linearized dynamics

m Linearized around steady state:

MG + D6 + Ad = ipk
T T T
m A - weighted Laplacian with coefficients

2 % *
AV (D_Pmax COS(6k+1 —d))
0
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Linearized dynamics

m Linearized around steady state:

MG + D6 + Ad = ipk
T T T
m A - weighted Laplacian with coefficients

2 % *
AV (D_Pmax COS(6k+1 —d))
0

m Only gradients of angles affect the flows
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Electromechanical waves

- - - — *
m Consider uniform flow solution A\, =P, cos 8"/w,
m Normal mode solutions have simple structure

61((n)(t) exp [ N (k+cyt) — Dt]

m No waves for voltage amplitude: normal modes
localized because of shunt elements
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Electromechanical waves

- - - — *
Consider uniform flow solution Ay, =P, .. cos&"/n,
Normal mode solutions have simple structure

61((n)(t) exp [ N (k+cyt) — Dt]

Wave vector ©n/N

No waves for voltage amplitude: normal modes
localized because of shunt elements
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Electromechanical waves

Consider uniform flow solution Ay, =P ..

Normal mode solutions have simple structure

61((n)(t) exp [Jﬁ (k+cyt) — Dt]

Wave vector nn/N
Wave phase velocity ¢, = VA/M ~ Q

m No waves for voltage amplitude: normal mod
localized because of shunt elements
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Electromechanical waves

- - - — *
Consider uniform flow solution Ay, =P, .. cos&"/n,

Normal mode solutions have simple structure

61((n)(t) exp [ N (k+cyt) — Dt]
Wave vector tn/N

Wave phase velocity ¢, = VA/M ~ Q

Similar solutions whenever A has Laplacian structure

No waves for voltage amplitude: normal modes
localized because of shunt elements
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Probability Distribution

m Correlation functions can be easily derived, look ugly,
not informative
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Probability Distribution

m Correlation functions can be easily derived, look ugly,

not informative
Simple [but artificial] case of equilibrium dynamics:
» If Fluctuation-Dissipation theorem 2TD, = E[pi] holds, then
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Probability Distribution

m Correlation functions can be easily derived, look ugly,

not informative
Simple [but artificial] case of equilibrium dynamics:
» If Fluctuation-Dissipation theorem 2TD, = E[pi] holds, then

m Equipartition principle: same average energy for each
degree of freedom (assume §; = 0)

M&? T P
E|—| ==, [ M (] — cos 8y )]
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Probability of collapse

m What is the closest unstable equilibrium point 7
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Probability of collapse

m What is the closest unstable equilibrium point 7
» “Flip"” one line &

*

ES
kg =90

kk+1
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Probability of collapse

m What is the closest unstable equilibrium point 7
» “Flip” one line 8 ., = -9,

m Total energy scales as NT/2, but AE ~ P, /o,.
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Probability of collapse

m What is the closest unstable equilibrium point 7

“ =N H ES &
» “Flip” one line 8 ., = -9,

m Total energy scales as NT/2, but AE ~ P, /o,.

m Order of magnitude estimate

Mo?
ENN.@ 0

AE P

max

) (2
Wy
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Probability of collapse

m What is the closest unstable equilibrium point 7

“ =N H ES &
» “Flip” one line 8 ., = -9,

m Total energy scales as NT/2, but AE ~ P, /o,.

m Order of magnitude estimate

Mo?
ENN.@ 0

AE P

max

) (2
Wy

m More than enough energy for collapse for large
systems
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Lecture Outline
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Probability of collapse Il

m Enough energy to pass the barrier: % > 1
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Probability of collapse Il

m Enough energy to pass the barrier: % > 1
m At the same time from equipartition

<1

AE Pmax
Prew || ~ew |
0
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Probability of collapse Il

m Enough energy to pass the barrier: % > 1
m At the same time from equipartition

<1

AE Pmax
Prew || ~ew |
0

m What's going on ?
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Probability of collapse Il

Enough energy to pass the barrier: % > 1
At the same time from equipartition

<1

AE Pmax
Prew || ~ew |
0

What's going on ?
Neighborhoods of Unstable Equilibrium Points have
very low entropy
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Probability of collapse Il

Enough energy to pass the barrier: % > 1
At the same time from equipartition

<1

AE Pmax
o [-4E] -
0

What's going on ?

Neighborhoods of Unstable Equilibrium Points have
very low entropy

Second Law of Thermodynamics prevents energy
concentration

III.
I I Massachusetts Institute of Technology



Motivation

Introduction to Stochastic systems

Fluctuations in two - bus system

Fluctuations in multi-bus system

m Why Energy methods [are doomed to] fail

» How can we fix them ?

m Lyapunov Function Family for Transient Stability
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Entropy and Energy methods

m Low entropy states: energy concentrated in small
region of phase space

m High entropy: energy distributed evenly in space
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m Low entropy states: energy concentrated in small
region of phase space

m High entropy: energy distributed evenly in space
m Dissipative terms (—DJ) - decrease energy
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Low entropy states: energy concentrated in small
region of phase space

High entropy: energy distributed evenly in space
Dissipative terms (—DJ) - decrease energy

Conservative terms P, sind - increase entropy
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Entropy and Energy methods

Low entropy states: energy concentrated in small
region of phase space

High entropy: energy distributed evenly in space
Dissipative terms (—DJ) - decrease energy

Conservative terms P, sind - increase entropy
Loss of stability possible with

» Low energy and low entropy (traditional CUEP)
» High energy and high entropy (realistic scenarios)
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Entropy and Energy methods

Low entropy states: energy concentrated in small
region of phase space

High entropy: energy distributed evenly in space
Dissipative terms (—DJ) - decrease energy

Conservative terms P, sind - increase entropy
Loss of stability possible with

» Low energy and low entropy (traditional CUEP)
» High energy and high entropy (realistic scenarios)

m Energy methods fail to account for entropy change
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Entropy and Energy methods

Low entropy states: energy concentrated in small
region of phase space

High entropy: energy distributed evenly in space
Dissipative terms (—DJ) - decrease energy

Conservative terms P, sind - increase entropy
Loss of stability possible with

» Low energy and low entropy (traditional CUEP)
» High energy and high entropy (realistic scenarios)

m Energy methods fail to account for entropy change

m Can air molecules in this room break the wall ?
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Fixing Energy methods

Can we fix energy methods 7
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Fixing Energy methods

Can we fix energy methods 7

1. Use free energy: F=E - TS

» Right potential for equilibrium systems (fixed T)
» No simple extension to non-equilibrium dynamics
» Entropy production results may be useful
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Fixing Energy methods

Can we fix energy methods 7

1. Use free energy: F=E - TS

» Right potential for equilibrium systems (fixed T)
» No simple extension to non-equilibrium dynamics
» Entropy production results may be useful

2. Bound energy flows
» Limit energy concentration by flow bounds
» Passivity, Integral Quadratic constraints ?
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Fixing Energy methods

Can we fix energy methods 7

1. Use free energy: F=E - TS

» Right potential for equilibrium systems (fixed T)
» No simple extension to non-equilibrium dynamics
» Entropy production results may be useful

2. Bound energy flows

» Limit energy concentration by flow bounds
» Passivity, Integral Quadratic constraints ?

3. Use other Lyapunov functions
» Less general, but more appropriate
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Motivation

Introduction to Stochastic systems

Fluctuations in two - bus system

Fluctuations in multi-bus system

m Why Energy methods [are doomed to] fail

» How can we fix them ?

m Lyapunov Function Family for Transient Stability
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Bounding nonlinearity

3 T T
Orj — O

ok ]

1+ . B

. —m — 5, 9 51

- ™= 0}

b 4

sin dy; — sin J;j
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Bounding nonlinearity

3 T T T T T T
Orj — O
s i
1k 4
«

. —m — 5, 9 51

- ™= 0}

b 9)

sin 0y — sin 5{7
e
3
-
5
I
5 4 3 2 -1 0 1 2 3

m Sector bound on nonlinearity
» 0< (- S;j)(sin Oy; — sin 6;;.) <y — (‘Sl’:j)2
» In polytope & : {8,5 : |y +6f{‘j| < m} nonlinear terms are
bounded
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Lyapunov function

1 .
{kjle&

I I I -
I I Massachusetts Institute of Technology



Lyapunov function

1 .
{kjle&

m x = [6—6%8]T is the state vector
m Lur'e-Postnikov Lyapunov function (also
Hiskens,Davy 1997)

m Generalizes the kinetic and potential terms
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Lyapunov function

1 .
{kjle&

x = [6 — 8%,8]T is the state vector
Lur'e-Postnikov Lyapunov function (also
Hiskens,Davy 1997)

Generalizes the kinetic and potential terms
Decay V < 0 certified only in the polytope &
Matrices K and Q are not arbitrary
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Linear Matrix inequality

ATQ + QA QB - CTH — (KCA)T

BTQT — H'C — (KCA) _2H =0
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Linear Matrix inequality

ATQ + QA QB - CTH — (KCA)T

BTQT — H'C — (KCA) _2H =0

m Linear Matrix inequality
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Linear Matrix inequality

ATQ + QA QB — CTH — (KCA)T

BTQT — H'C — (KCA) _oH =0

m Linear Matrix inequality

m K, H positive definite, diagonal of size X &

m Q - positive definite of size 2n X 2n
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Linear Matrix inequality

ATQ + QA QB - CTH — (KCA)T

BTQT — H'C — (KCA) _2H =0

m Linear Matrix inequality
m K, H positive definite, diagonal of size X &
m Q - positive definite of size 2n X 2n

m Convex optimization problem
m Powerful SDP methods
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Stability region

Flow—out boundary

|
o

!
IS
ol

Flow=in bofmdary ‘
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Stability region

68f Flow-=in boundary 1
ab B
2t B
of i
-2r il
-4 Flow—out boundary 4
—6Ly ! i i i i i |

iy -4 0 2 4 6 8
-7+ 20 — 0* ™ —2a —0* 6

m Stability certified only as long as trajectory stays in &

I I I I Massachusetts Institute of Technology



Stability region

Flow=in bofmdary ‘

: Flow—out boundary

m Stability certified only as long as trajectory stays in &
m Level set of Lyapunov function should not intersect
the boundaries of & with outgoing flow
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Stability certificate

System is stable as long as V(x(0)) < V,;, with

V. . = min V(x)

i Xxeoqgpout
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Stability certificate

System is stable as long as V(x(0)) < V,;, with

V. . = min V(x)

min XxEqgpout

m Minimization over ~ n hyperplanes

* —
O + 8y; = =,

iskao
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Stability certificate

System is stable as long as V(x(0)) < V,;, with

V. . = min V(x)

min XxEqgpout

m Minimization over ~ n hyperplanes

* —
O + 8y; = =,

iskao

m Generally NP-hard, due non-convexity of V(x)
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Stability certificate

System is stable as long as V(x(0)) < V,;, with

V. . = min V(x)

min XxEqgpout

m Minimization over ~ n hyperplanes

* —
O + 8y; = =,

iskao

Generally NP-hard, due non-convexity of V(x)
m Least conservative certificate
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Convex certificate

Consider a subset of phase space

V... = min V(X)

i Xxeoqou
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Convex certificate

Consider a subset of phase space
V_. = min V(x) (3)

i Xxeoqou

m V(x) is provably convex in @ (see also Dorfler, 2011)
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Convex certificate

Consider a subset of phase space

Q@ ={x: [8| <n/2}
V_. = min V(x) (3)

i Xxeoqou

m V(x) is provably convex in @ (see also Dorfler, 2011)
m |In most practical situations @ C &
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Convex certificate

Consider a subset of phase space

Q@ ={x: [8| <n/2}
V_. = min V(x) (3)

i Xxeoqou

m V(x) is provably convex in @ (see also Dorfler, 2011)
m |In most practical situations @ C &
m Convex optimization based construction of V_..
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Convex certificate

Consider a subset of phase space

Viin = min V

min = Min_V(x) (3)
m V(x) is provably convex in @ (see also Dorfler, 2011)
m |In most practical situations @ C &

m Convex optimization based construction of V_..

m Other convex constructions possible based on
algebraic bounds of V(x)
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Adapting Lyapunov functions

F ;
1 1
Ly i
[ 1
/ Ve f
2 [ v ;
i i
i SEP 1
Ll . !
1
1
1
1
'
1
1
i 1
=4 2r—4§ [
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Adapting Lyapunov functions

SefT

SEP
.

i L i L I |
-6 N [ 2 g4 6§

m Lyapunov functions can be adapted to a given initial
condition
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Adapting Lyapunov functions

ST

SEP
.

1 i
i i i I i i
-6 N [ 2 g4 6§

m Lyapunov functions can be adapted to a given initial

condition
m If a Lyapunov function exists it will be found in finite

time
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Numerical simulations

Convex Lyapunov

H —— Non-convex Lyapunov

G — Energy method
0
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Numerical simulations

—— Non-convex Lyapunov|
Energy method

% 6 i
— % H Convex Lyapunov

B '

b

'

m Works well for 9 bus system, less conservative than
energy function
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Numerical simulations

—— Non-convex Lyapunov|
Energy method

% 6 i
— % H Convex Lyapunov

B '

b

'

m Works well for 9 bus system, less conservative than
energy function

m About 2 seconds for certificate construction in CVX
for 39 bus system on a regular laptop
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Ongoing work
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Ongoing work

m Generalization to lossy grids

(ACC)
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Ongoing work

m Generalization to lossy grids

(ACCQ) "
m Robustness with respect to 2
operating point (ACC)
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Ongoing work

m Generalization to lossy grids
(ACCQ)

m Robustness with respect to
operating point (ACC)

m Higer-order generator models -
ongoing
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Ongoing work

Generalization to lossy grids
(ACCQ)

Robustness with respect to
operating point (ACC)
Higer-order generator models -
ongoing

Topology change - planned
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Ongoing work

Generalization to lossy grids
(ACCQ)

Robustness with respect to
operating point (ACC)
Higer-order generator models -
ongoing

Topology change - planned
Fault-on dynamics - planned

I I I -
I I Massachusetts Institute of Technology




Ongoing work

m Generalization to lossy grids

(ACCQ) "
m Robustness with respect to 2
operating point (ACC)

m Higer-order generator models -

ongoing 1
m Topology change - planned I
m Fault-on dynamics - planned

m Compositional approaches -
planned
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Key points

Seconds time-scale dynamics critical for security
System is inherently stochastic

Simple models can be developed for fluctuations
Ambient fluctuations may lead to collapse

Enough energy to collapse in large systems
Need to account for entropy growth

|
|
|
|
m Frequency control is crucial for stability
|
|
m Alternatives to Energy methods exist

|

Questions ?
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