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Costs and benefits

▪ Total value of power: ≈ $400B/year, ≈ 2% of GDP

▪ Value of solar energy in US: ≈ $1B/year
▪ Cost of power interruptions : ⪆ $100B/year

Enormous opportunity in reliability improvement
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Power system security

▪ First 30 seconds are critical for cascade propagation
▪ Direct human intervention not possible
▪ Need advanced planning and automatic response

▪ Challenges
▶ Faster than real-time simulation still a challenge
▶ Tens of billions of possible failure scenarios
▶ Advanced mathematical tools are lacking

▪ Opportunities
▶ Fast sensing - PMU
▶ Fast non-local actuation - FACTS/HVDC
▶ Algorithms and computing power
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Stochastic dynamics

Why stochastic models ?

▪ Steady states are never reached
▪ System is inherently stochastic
▪ More problems in the future:

▶ Intermittent Renewables
▶ Operation closer to stability limits
▶ Microgrids - more variability
▶ More reliance on real-time sensing

From: Messina, Inter-Area Oscilla-

tions in Power Systems
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The green markers show the corresponding estimates using the entire 20 min
of data. As can be seen in the plot, the variance of the estimated damping
during probing is more than twice as small as the variance during the ambient
condition.
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Fig. 1.12 Mode estimates for 16-machine system with a transient from 100 Monte Carlo
simulations for each algorithm. Pre- and post-transient damping differ. Ttotal¼ 2 min

Fig. 1.13 Brake response of
western North American
power system. Brake
inserted at the 300 s point.
Combined ambient and
ringdown data from field
measurements. Detrended
power flowing on a major
transmission line
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Sources of fluctuations on seconds scale

Some common sources

▪ Loads
▶ Switching of power electronics
▶ Mechanical torque fluctuations in

motors
▶ Arc furnaces, wood chippers …

▪ Generators
▶ Small-scale turbulence on blades
▶ Cloud covering panels
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Fig. 5. Spectrum of equivalent wind speed and output power of the wind
turbine in the base case.

The wind turbine can operate in a wide speed range. In the
base case, the turbine speed varies around 16 rpm, which corre-
sponds to the frequency of 0.8 Hz. A frequency analysis of
the equivalent wind speed and the output power has been carried
out, as shown in Fig. 5. The spectrum of the equivalent wind
speed indicates that the frequency component, due to the
wind gradient and the tower shadow effect, has been represented
in the wind model. However, the higher frequency components,
such as , , , etc, are not included. The frequency com-
ponent is transmitted to the output power of the wind turbine,
which will induce voltage fluctuation and flicker in the grid.

The short-term flicker severity in the base case equals to
0.044, which represents the flicker level in the case of a single
wind turbine connected to a strong grid. It is recommended that
in distribution networks a flicker emission of is
considered acceptable for wind turbine installations [19]. For
the wind turbines connected to the transmission networks, the
flicker contribution from the wind turbines in the connection
point shall be limited to be below [20]. It is seen
the flicker level in the base case is far below the required limits.
However, for multiple wind turbines connected to a relatively
weak grid, the flicker level may be significantly different.

Flicker emission of grid connected wind turbines depends on
many factors, such as wind parameters, grid condition, etc. On
the basis of the base case, the dependence of flicker emission on
the following factors is studied:

• mean wind speed ;
• turbulence intensity ;
• short circuit capacity ratio ;
• grid impedance angle .

In the following cases, the concerned factors are to be changed
while the other parameters are kept constant as that in the base
case.

A. Mean Wind Speed

In the case of the fixed speed wind turbine, the flicker
rises up at increasing wind speeds. The flicker level increases
around three times from lower to higher wind speed. As for
the pitch-controlled fixed speed wind turbine, due to gusts and

Fig. 6. Short-term flicker severity variation with mean wind speed (
, , ).

the speed of the pitch mechanism, instantaneous power will
fluctuate around the rated value of the power in high wind
speeds. Variations in wind-speed of 1 m/s may give power
fluctuations with a magnitude of 20%, which induces high
flicker levels. With respect to the stall-regulated fixed speed
wind turbine, in high wind-speed condition, variations in the
wind speed will also cause power fluctuations but with a smaller
magnitude in comparison with a pitch-controlled turbine [2].

For the variable speed wind turbine with doubly fed induction
generator, the variation of short-term flicker severity with
mean wind speed is illustrated in Fig. 6. As it is shown, in low
wind speeds (less than 7.5 m/s), the value is very low due
to a small output power. Then the value increases with an
approximate linear relation to the mean wind speed due to an in-
crease in the turbulence in the wind, until it reaches 11.5 m/s. For
higher wind speeds, where the wind turbine reaches rated power,
the flicker level decreases. The reason is that the combination of
the pitch angle modulation and the variable speed operation can
significantly smooth out the turbulence-induced fluctuations re-
flected in the output power of the wind turbine. The decrease of
the flicker level in high wind speeds indicates that, even though
the pitch control scheme may dominate over the speed control
scheme for limiting the power, the variable speed operation will
smooth out the power fluctuation effectively and, thereby, limit
the flicker.

B. Turbulence Intensity

For the fixed speed wind turbine, the flicker level almost
increases linearly with the increase of the turbulence Intensity
[4], [5]. For the variable speed wind turbine with doubly
fed induction generator, the relationship between the and
turbulence intensity varies with different mean wind speed,
which is evident in Fig. 7.

As it is shown, in low wind speeds (for example, ),
the has an almost linear relation with the turbulence inten-
sity. The more turbulence in the wind results in larger flicker
emission. However, in high wind speeds (for example,

), where the wind turbine is controlled to keep the rated
output power, the relationship between the and turbulence
intensity is quite different. When the turbulence intensity of the
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Technologies and Applications

▪ PMU Sensing
▶ GPS synchronized
▶ Real-time sensing and communication
▶ Sub-cycle pulse sampling
▶ Thousands units installed in US

▪ Wide Area Monitoring/Control:
▶ Security analysis, fault detection
▶ Frequency/voltage control
▶ Improved state estimation
▶ Real-time dynamic equivalencing
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Disclaimers

▪ Long History of stochastic dynamics of power systems

▪ No general textbooks written

▪ Less research effort than there should be
▪ Works I found interesting/important written by:

▶ Chris De Marco - first papers on stochastic models in 80s
▶ Chika Nwanpka - some very advanced methods applied in 90s
▶ Trudnowski, Messina - stochastic models for signal analysis
▶ Paul Hines - security indicators, critical slowing down
▶ Federico Milano - simulations of stochastic power systems
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Stochastic processes

▪ Probabilistic description is usually a substitute for
modeling dependence on unknown parameters:

▶ Wind variations depend on velocity distributions outside
▶ Wood mill power depends on the sequence of logs

▪ Stochastic process: ensemble of realizations of a
given function x(t)

▪ Formally, think of x(t, σ) with σ ∈ S - realization of
unknown parameters

▪ Most important operations on stochastic model:
▶ Sampling : Generate realizations of the process:

x(t, σ1), x(t, σ2) …
▶ Averaging : Integrate over possible realizations: ∑k F{x(t, σk)}
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Stationary random processes

▪ Averages of stationary processes do not depend on
absolute time.

▪ No way to tell if the plot has been shifted in time.

▪ Time average usually same as ensemble average

Load/Renewable variations: nearly stationary on
seconds/minutes, cyclic on hours/months
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Process characterization

Most common characteristics of random processes

▪ Mean value

μx(t) = E[x(t)] = ∑
k

x(t, σk)

▪ Correlation function:

Rxx(t1, t2) = E[x(t1)x(t2)]

▪ For stationary processes

μx(t) = const, Rxx(t1, t2) = Rxx(t1 − t2)
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Process example

▪ Simple example:
x(t) = sin(ωt + ϕ), ϕ ∼ U(0, 2π)

▪ Mean value: μ(t) = ∫2π
0

dϕ
2π

sin(ωt + ϕ) = 0
▪ Correlation function:

Rxx(t1, t2) = E[x(t1)x(t2)] =

∫
dϕ
2π

sin(ωt1 + ϕ) sin(ωt2 + ϕ) =

1
2

cos ω(t1 − t2)
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Wiener-Khinchin Theorem

▪ Fourier transform of the correlation function ...

Sxx(jω) = ∫ Rxx(t) exp(−jωt)dt

▪ ... is also the power spectral density:

Sxx(jω) = lim
T→∞

1
2T

E |∫
T

−T
x(t) exp(jωt)dt|

2

▪ Instantaneous power:

E[x2(t)] = ∫
dω
2π

Sxx(jω)
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Higher-order statistics

▪ Typical processes can be fully characterized via
moments:

E[x(t1) … x(tN)]

▪ For Gaussian processes (with zero mean) Wick
theorem holds:

E[x(t1) … x(t2n)] =
n

∏
i=1

E[x(t2i−1)x(t2i)]

▪ Mean and correlation fully define Gaussian process
▪ Gaussian processes are invariant under linear

transformations
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Process 1: White Noise

▪ White noise ξ(t): building block of all random
processes.

▪ No correlation in time: Rxx(t) = δ(t).

▪ In practice: correlation time smaller than system’s
timescale.

▪ Uniform power spectral density: Sxx(jω) = 1
▪ Power system context:

▶ Short surges of power
▶ Starting of motors
▶ Vibrations ?
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Example 2: Wiener process

▪ Brownian walk or Wiener process - integral of white
noise

Ḃ(t) = ξ(t)

▪ Not stationary itself, but with stationary increments

E [(B(t1) − B(t2))2] = 2D|t1 − t2|

▪ Power systems context:
▶ Gradual build-up of power
▶ Small on/off switching events
▶ Better model for short times
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Example 3: Ornstein Uhlenbeck

▪ An intermediate model between white-noise and
Wiener process:

τdx
dt

= −x + ξ(t)

▪ Correlation function: Rxx(t) = exp(− |t|
τ

)
▪ Power Spectral density

Sxx(jω) = 1
1 + ω2τ2

▪ Like Brownian walk on small time-scales ωτ ≫ 1
▪ Like white noise on long time-scales ωτ ≪ 1

18
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Linear SDEs

▪ Linear Time Invariant Stochastic Differential
Equations

L (
d
dt)

y(t) = x(t)

▪ Can be solved via Fourier transform:

y(jω) =
x(jω)

L(−jω)
⟹ Syy(jω) =

Sxx(jω)
|L(−jω)|2

▪ Nonlinear SDEs are more difficult
▪ Many asymptotic techniques developed in physics

19
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Lecture Outline

▪ Motivation

▪ Introduction to Stochastic systems

▪ Fluctuations in two - bus system

▪ Fluctuations in multi-bus system
▪ Why Energy methods [are doomed to] fail

▶ How can we fix them ?
▪ Lyapunov Function Family for Transient Stability
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Power system model

Assumptions for the following discussion:

▪ Time-scale separation in the system
▪ Load Dynamics:

▶ Random build-up of load with long correlations
▶ Ornstein Uhlenbeck process with T in minutes or longer

▪ Inter-area oscillations:
▶ Natural frequency with period ≈ 1s
▶ Underdamped system with relaxation time ≈ 5 − 10s

▪ No voltage and subsynchronous dynamics resolved
▪ Two-bus and multi-bus models
▪ Goal: characterize ambient fluctuations
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Two bus model

▪ Classical example of inter-area oscillations:

Mδ̈1 + Dδ̇1 =
P1

ω0
−

Pmax

ω0
sin(δ1 − δ2) (1)

Mδ̈2 + Dδ̇2 =
P2

ω0
+

Pmax

ω0
sin(δ1 − δ2) (2)

▪ M - aggregate turbine inertia
▪ D - droop, primary frequency control
▪ P1,2 - total production/generation levels
▪ Pmax - power transfer capacity of the line
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Normal mode variables

▪ Two normal modes:
▶ δave = 1

2 [δ1 + δ2] - mean angle/frequency of the system
▶ δ12 = δ1 − δ2 relative angle

▪ Governing equations:

Mδ̈ave + Dδ̇ave = 1
ω0

[P1 + P2]

Mδ̈12 + Dδ̇12 = 1
ω0

[P1 − P2] − 2
ω0

Pmax sin δ12

▪ Independent dynamics

23
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Linearized dynamics

▪ For state δ12 = δ∗
12 + δ close to equilibrium point:

sin δ∗
12 = (P0

1 − P0
2 )/Pmax

Mδ̈ + Dδ̈ + [
2

ω0
Pmax cos δ∗

12] δ = 1
ω0

p(t)

▪ Power fluctuations p(t) = P1 − P0
1 − P2 + P0

2
▪ Underdamped system:

▶ Natural frequency Ω = √
2Pmax cos δ∗

12

ω0M

▶ Damping rate: γ = D
2M

24
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Variability of angle

▪ For any random process p(t) power spectral density of
the angle difference is given by

Sδδ(jω) =
Spp(jω)

ω2
0M2

1
(ω2 − Ω2)2 + γ2Ω2 = Spp(jω)T(jω)

▪ Variance of angle fluctuations

E[δ2] = Rδδ(0) = ∫
dω
2π

Spp(jω)T(jω)
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State fluctuations
▪ Two dominant contributions:

Rδδ(0) = ∫
dω
2π

Spp(jω)T(jω) ≈

Rpp(0)

4P2
max cos2 δ∗

12

+
Spp(jΩ)

2ω0DPmax cos δ∗
12

▶ Slow drift of operating point
▶ Resonant excitation of EM modes

▪ Multi-scale decomposition of δ:

δ(t) = δ̂(ϵt) + δ̃(t), ϵ = 1
ΩTp
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Critical fluctuations

E[δ̃2] =
Spp(jΩ)

2ω0DPmax cos δ∗
12

▪ EM modes are amplified close to bifurcations:
▶ Saddle-node bifurcation (loadability limit) for cos δ∗

12 → 0
▶ Hopf bifurcation for D → 0

▪ Natural Security indicator (see works of P. Hines)
▪ Opportunity for better state estimation:

▶ Deterministic algorithm become inaccurate
▶ Fluctuations immediately give distance to collapse: cos δ∗

12
▶ Extraction of directions possible but more difficult

27
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Simulations of 2 bus system

▪ Swing instability can be triggered by random
fluctuations.

▪ How do we estimate the probability ?

28
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Swing probability

▪ Linear model estimation: P ∼ exp [− (π/2−δ∗
12)2

2E[δ̂2] ]

▪ Nonlinear result available for white-noise p(t):

P = 1
Z

exp [−E(δ, δ̇)
T ]

▶ Effective temperature: T = Spp(jΩ)

ω2
0D

▶ Similar to particle in potential

▪ Natural security indicator - probability of collapse
▪ Extensions to multi-dimensional case possible

(Podolsky, KT ’13)
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Energy function

E = Mδ̇2

2
− 2

ω0
Pmax cos δ −

p
ω0

δ.

▪ Kinetic energy of the turbines

▪ Inductive energy of the lines

▪ Thermal energy of steam
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Energy method

−5

0

5

−5
0
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−3
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−1

0

1

2

3

4

X: 2.513
Y: 0.7854
Z: 0.4943

▪ Fast transient stability certificate
▪ If E(δ(0), δ̇(0)) < ECUEP, then δ → δ∗ as t → ∞
▪ Computing ECUEP is NP-hard problem
▪ Certificates are generally conservative
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Collapse probability

▪ Given equilibrium distribution P ∼ exp (−E
T)

▪ What is probability of collapse ?

▪ Pcoll ∼ exp (−ΔE
T ) with ΔE = ECUEP − E∗ ∼ Pmax/ω0

▪ Limit on the frequency fluctuations:

Mδ̇2 ≪
Pmax

ω0
⟹ δ̇ ≪ Ω

▪ For typical systems Δf ≪ 1 Hz.

32
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Frequency fluctuations

▪ Leading contribution from inter-area oscillations:

E[δ̇2] ≈ Ω2E[δ2] ∼
Spp(jΩ)

ω2
0DM

▪ Average angle dynamics (Mδ̈ave + Dδ̇ave = 1
ω0

[P1 + P2]):

Sδ̇aveδ̇ave
∼

E[(P1 + P2)2]
ω2

0D2

▪ Can become very large!
▪ Need secondary frequency control to stabilize

33



Frequency fluctuations

▪ Leading contribution from inter-area oscillations:

E[δ̇2] ≈ Ω2E[δ2] ∼
Spp(jΩ)

ω2
0DM

▪ Average angle dynamics (Mδ̈ave + Dδ̇ave = 1
ω0

[P1 + P2]):

Sδ̇aveδ̇ave
∼

E[(P1 + P2)2]
ω2

0D2

▪ Can become very large!
▪ Need secondary frequency control to stabilize

33



Frequency fluctuations

▪ Leading contribution from inter-area oscillations:

E[δ̇2] ≈ Ω2E[δ2] ∼
Spp(jΩ)

ω2
0DM

▪ Average angle dynamics (Mδ̈ave + Dδ̇ave = 1
ω0

[P1 + P2]):

Sδ̇aveδ̇ave
∼

E[(P1 + P2)2]
ω2

0D2

▪ Can become very large!

▪ Need secondary frequency control to stabilize

33



Frequency fluctuations

▪ Leading contribution from inter-area oscillations:

E[δ̇2] ≈ Ω2E[δ2] ∼
Spp(jΩ)

ω2
0DM

▪ Average angle dynamics (Mδ̈ave + Dδ̇ave = 1
ω0

[P1 + P2]):

Sδ̇aveδ̇ave
∼

E[(P1 + P2)2]
ω2

0D2

▪ Can become very large!
▪ Need secondary frequency control to stabilize

33



Secondary frequency control

▪ Simple ACE signal model: P1,2 → P1,2 − ku(t)

u̇ = − u
T

+ δ̇ave ⟹ u(t) = ∫
∞

0
δ̇ave(t − τ) exp (− τ

T) dτ

▪ Slow variations of loads are naturally damped:

Sδ̇aveδ̇ave
= ∫

∞

0

dω
2πω2

0

Spp(jω)

|D − jωM + kT
1−jωT|

2

▪ Performance metric for Secondary Frequency controls.
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Lecture Outline

▪ Motivation

▪ Introduction to Stochastic systems

▪ Fluctuations in two - bus system

▪ Fluctuations in multi-bus system
▪ Why Energy methods [are doomed to] fail

▶ How can we fix them ?
▪ Lyapunov Function Family for Transient Stability
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Multi-bus model

Mδ̈k+Dδ̇k+
Pmax

ω0
[sin(δk−1 − δk) + sin(δk+1 − δk)] = 1

ω0
Pk

Boundary conditions δ0 = δ1 and δN = δN+1

36



Linearized dynamics

▪ Linearized around steady state:

Mδ̈ + Dδ̇ + Δδ = 1
ω0

pk

▪ Δ - weighted Laplacian with coefficients

Δk,k+1 = 2
ω0

Pmax cos(δ∗
k+1 − δ∗

k)

▪ Only gradients of angles affect the flows

37



Linearized dynamics

▪ Linearized around steady state:

Mδ̈ + Dδ̇ + Δδ = 1
ω0

pk

▪ Δ - weighted Laplacian with coefficients

Δk,k+1 = 2
ω0

Pmax cos(δ∗
k+1 − δ∗

k)

▪ Only gradients of angles affect the flows

37



Linearized dynamics

▪ Linearized around steady state:

Mδ̈ + Dδ̇ + Δδ = 1
ω0

pk

▪ Δ - weighted Laplacian with coefficients

Δk,k+1 = 2
ω0

Pmax cos(δ∗
k+1 − δ∗

k)

▪ Only gradients of angles affect the flows

37



Electromechanical waves

▪ Consider uniform flow solution Δk,k+1 = Pmax cos δ∗/ω0
▪ Normal mode solutions have simple structure

δ(n)
k (t) = exp [jπn

N (k ± cnt) − Dt]

▪ Wave vector πn/N
▪ Wave phase velocity cn = √Δ/M ∼ Ω
▪ Similar solutions whenever Δ has Laplacian structure

▪ No waves for voltage amplitude: normal modes
localized because of shunt elements

38
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Probability Distribution

▪ Correlation functions can be easily derived, look ugly,
not informative

▪ Simple [but artificial] case of equilibrium dynamics:
▶ If Fluctuation-Dissipation theorem 2TDk = E[p2

k] holds, then

P(δ, δ̇) = 1
Z

exp
[

−
E(δ, δ̇)

T ]

▪ Equipartition principle: same average energy for each
degree of freedom (assume δ∗

k = 0)

E
[

Mδ̇2
k

2 ]
= T

2
, E [

Pmax

ω0
(1 − cos δk,k+1)] = T

2
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Probability of collapse

▪ What is the closest unstable equilibrium point ?

▶ “Flip” one line δ∗
k,k+1 → π − δ∗

k,k+1

▪ Total energy scales as NT/2, but ΔE ∼ Pmax/ω0.
▪ Order of magnitude estimate

NT
ΔE

∼ N ⋅ (δ̇
Mω2

0

Pmax
) ⋅ ( δ̇

ω0
)

▪ More than enough energy for collapse for large
systems

40
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Lecture Outline
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Probability of collapse II

▪ Enough energy to pass the barrier: NT
ΔE

≫ 1

▪ At the same time from equipartition

P ∼ exp [−ΔE
T ] ∼ exp [−

Pmax

ω0T ] ≪ 1

▪ What’s going on ?
▪ Neighborhoods of Unstable Equilibrium Points have

very low entropy
▪ Second Law of Thermodynamics prevents energy

concentration

42
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▪ Motivation

▪ Introduction to Stochastic systems

▪ Fluctuations in two - bus system

▪ Fluctuations in multi-bus system

▪ Why Energy methods [are doomed to] fail
▶ How can we fix them ?

▪ Lyapunov Function Family for Transient Stability
43



Entropy and Energy methods

▪ Low entropy states: energy concentrated in small
region of phase space

▪ High entropy: energy distributed evenly in space

▪ Dissipative terms (−Dδ̇) - decrease energy
▪ Conservative terms Pmax sin δ - increase entropy
▪ Loss of stability possible with

▶ Low energy and low entropy (traditional CUEP)
▶ High energy and high entropy (realistic scenarios)

▪ Energy methods fail to account for entropy change
▪ Can air molecules in this room break the wall ?
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Fixing Energy methods

Can we fix energy methods ?

1. Use free energy: F = E − TS
▶ Right potential for equilibrium systems (fixed T)
▶ No simple extension to non-equilibrium dynamics
▶ Entropy production results may be useful

2. Bound energy flows
▶ Limit energy concentration by flow bounds
▶ Passivity, Integral Quadratic constraints ?

3. Use other Lyapunov functions
▶ Less general, but more appropriate

44
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▪ Introduction to Stochastic systems

▪ Fluctuations in two - bus system
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▪ Lyapunov Function Family for Transient Stability
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Bounding nonlinearity
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δkj

π − δ∗kj

δ∗kj

sin δkj − sin δ∗kj

▪ Sector bound on nonlinearity

▶ 0 ≤ (δkj − δ∗
kj)(sin δkj − sin δ∗

kj) ≤ (δkj − δ∗
kj)

2

▶ In polytope 𝒫 ∶ {δ, δ̇ ∶ |δkj + δ∗
kj| < π} nonlinear terms are

bounded
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Lyapunov function

V(x) = 1
2

xTQx − ∑
{k,j}∈ℰ

K{k,j} (cos δkj + δkj sin δ∗
kj)

▪ x = [δ − δ∗, δ̇]T is the state vector
▪ Lur’e-Postnikov Lyapunov function (also

Hiskens,Davy 1997)
▪ Generalizes the kinetic and potential terms
▪ Decay V̇ < 0 certified only in the polytope 𝒫
▪ Matrices K and Q are not arbitrary
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Linear Matrix inequality

[
ATQ + QA QB − CTH − (KCA)T

BTQT − HTC − (KCA) −2H ] ⪯ 0

▪ Linear Matrix inequality
▪ K, H positive definite, diagonal of size ℰ × ℰ
▪ Q - positive definite of size 2n × 2n
▪ Convex optimization problem
▪ Powerful SDP methods
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Stability region
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▪ Stability certified only as long as trajectory stays in 𝒫
▪ Level set of Lyapunov function should not intersect

the boundaries of 𝒫 with outgoing flow
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Stability certificate

System is stable as long as V(x(0)) < Vmin with

Vmin = min
x∈∂𝒫 out

V(x)

▪ Generally NP-hard, due non-convexity of V(x)

▪ Least conservative certificate
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Convex certificate

Consider a subset of phase space

𝒬 = {x ∶ |δkj| < π/2}
Vmin = min

x∈∂𝒬out
V(x) (3)

▪ V(x) is provably convex in 𝒬 (see also Dörfler, 2011)
▪ In most practical situations 𝒬 ⊂ 𝒫
▪ Convex optimization based construction of Vmin
▪ Other convex constructions possible based on

algebraic bounds of V(x)
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Adapting Lyapunov functions
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▪ Lyapunov functions can be adapted to a given initial
condition

▪ If a Lyapunov function exists it will be found in finite
time
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Numerical simulations
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▪ Works well for 9 bus system, less conservative than
energy function

▪ About 2 seconds for certificate construction in CVX
for 39 bus system on a regular laptop
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Ongoing work

▪ Generalization to lossy grids
(ACC)

▪ Robustness with respect to
operating point (ACC)

▪ Higer-order generator models -
ongoing

▪ Topology change - planned
▪ Fault-on dynamics - planned
▪ Compositional approaches -

planned

53
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▪ Robustness with respect to
operating point (ACC)

▪ Higer-order generator models -
ongoing

▪ Topology change - planned
▪ Fault-on dynamics - planned

▪ Compositional approaches -
planned
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Key points

▪ Seconds time-scale dynamics critical for security
▪ System is inherently stochastic
▪ Simple models can be developed for fluctuations
▪ Ambient fluctuations may lead to collapse
▪ Frequency control is crucial for stability
▪ Enough energy to collapse in large systems
▪ Need to account for entropy growth
▪ Alternatives to Energy methods exist
▪ Questions ?

54


