Optimization Fundamentals of OPF Problems

Daniel Bienstock, Columbia University

January 2015

Power flow problem in its simplest form

Power flow problem in its simplest form

Parameters:

e For each line km, its admittance b, + 796m = bmr + 7Gmk

e For each bus k, voltage limits Vkmin and V"X

e For each bus k., active and reactive net power limits

ppin - prmax s Quinand QX

Variables:

e For each bus k, complex voltage er + 7 fr

Notation: For a bus k, (k) = set of lines incident with k

Basic problem

Find a solution to:

Plgnin < Z [gkm(ez + fl?) — gkm(ekem + fk:fm) -+ bkm(ekfm — fkem)} < F
km e (k)
win < N [—bemleh + [+ brmleren + fifum) + Grm(erfo — frem)] < G
kmed(k)
(‘/kmin)Q < 62 4+ f]<2; < (‘/'k:max)Q7

for each bus &k =1,2,...

Many possible variations
e Line limits

e Various optimization versions

Quadratically constrained, quadratic programming problems

(QCQPs):
min fo(z)
st. fi(z) >0, 1<i<m
r € R"
Here,

filx) = o' Mz +clz +d,

is a general quadratic

Each M; is n X n, wlog symmetric

Quadratically constrained, quadratic programming problems

(QCQPs):
min fo(z)
st. fi(z) >0, 1<i<m
r € R"
Here,

filx) = o' Mz +clz +d,

is a general quadratic

Each M; is n X n, wlog symmetric

Quadratically constrained, quadratic programming problems

(QCQPs):
min fo(z)
st. fi(z) >0, 1<i<m
r € R"
Here,

filx) = o' Mz +clz +d,

is a general quadratic

Each M; is n X n, wlog symmetric

Special case: Linear Programming

min c¢ x
st. Ax > b,

r e R"

Quadratically constrained, quadratic programming problems

(QCQPs):
min fo(z)
st. fi(z) >0, 1<i<m
r € R"
Here,

filx) = o' Mz +clz +d,

is a general quadratic

Each M; is n X n, wlog symmetric

Special case: Convex Quadratic Programming:

Folklore result: QCQP is NP-hard

Folklore result: QCQP is NP-hard

Let wy,wo, ..., w, be integers, and consider:

W* = min — E T3
)
s.t. E W; Ty = O,
1

1<y <1, 1<i<n.

Folklore result: QCQP is NP-hard

Let wy,wo, ..., w, be integers, and consider:

W* = min — E T3
)
s.t. E W; Ty = O,
1

1<y <1, 1<i<n.

W* = —n, iff there exists a subset J C {1,...,n} with

2w =) w

jeJ 2

Folklore result: QCQP is NP-hard

Let wy,wo, ..., w, be integers, and consider:

W* = min — g 7
i
s.t. E W; T; = O,
i

1<y <1, 1<i<n.

W* = —n, iff there exists a subset J C {1,...,n} with

Y - Yo,

jeJ jeJ

e Lavaei & Low (2011), van Hentenryck & Coffrin (2014): AC-OPF is NP-

hard on trees

Folklore result: QCQP is NP-hard

Let wy,wo, ..., w, be integers, and consider:

W* = min — g 7
i
s.t. E W; T; = O,
i

1<y <1, 1<i<n.

W* = —n, iff there exists a subset J C {1,...,n} with

Y - Yo,

jeJ jeJ

Actually, exactly what are “NP-hard” problems?

Folklore result: QCQP is NP-hard

Let wy,wo, ..., w, be integers, and consider:

W* = min — g 7
i
s.t. E W; T; = O,
i

1<y <1, 1<i<n.

W* = —n, iff there exists a subset J C {1,...,n} with

Y - Yo,

jeJ jeJ

Actually, exactly what are “NP-hard” problems?

e Really, really hard problems?

Folklore result: QCQP is NP-hard

Let wy,wo, ..., w, be integers, and consider:

W* = min — g 7
i
s.t. E W; T; = O,
i

1<y <1, 1<i<n.

W* = —n, iff there exists a subset J C {1,...,n} with

Y - Yo,

jeJ jeJ

Actually, exactly what are “NP-hard” problems?

e Really, really hard problems?

e But it is really, really hard to say exactly how they are hard?

Digression: NP-hardness

“Turing Machine” model (bit model) of computing

Programs = algorithms use 1-dimensional memory (“tape”) where Os and

1s are stored

e In one step, head reads/writes and /or moves one unit

Digression: NP-hardness

“Turing Machine” model (bit model) of computing

Programs = algorithms use 1-dimensional memory (“tape”) where Os and

1s are stored

e In one step, head reads/writes and /or moves one unit

e Yes/no problems (like integer partition)

Digression: NP-hardness

“Turing Machine” model (bit model) of computing

Programs = algorithms use 1-dimensional memory (“tape”) where Os and

1s are stored

e In one step, head reads/writes and /or moves one unit

e Yes/no problems (like integer partition)

e A problem is in the class NP if for any “YES” instance there exists a
verification in time polynomial in the number of bits needed to describe

the instance

Digression: NP-hardness

“Turing Machine” model (bit model) of computing

Programs = algorithms use 1-dimensional memory (“tape”) where Os and

1s are stored

e In one step, head reads/writes and /or moves one unit

e Yes/no problems (like integer partition)

e A problem is in the class NP if for any “YES” instance there exists a
verification in time polynomial in the number of bits needed to describe

the instance

Example: given integers wq, ws, ..., w,, does there exist a subset J with
S = o
jedJ Jjé&J

Note: We are simply verifying a certificate that somebody gave us

Digression: NP-hardness

“Turing Machine” model (bit model) of computing

Programs = algorithms use 1-dimensional memory (“tape”) where Os and

1s are stored

e In one step, head reads/writes and /or moves one unit

e Yes/no problems (like integer partition)

e A problem is in the class NP if for any “YES” instance there exists a
verification in time polynomial in the number of bits needed to describe

the instance

Example: given integers wq, ws, ..., w,, does there exist a subset J with
S = o
jedJ Jjé&J

Note: We are simply verifying a certificate that somebody gave us

Proxy concept: problems in NP are “well-defined”

Digression: NP-hardness

“Turing Machine” model (bit model) of computing

Programs = algorithms use 1-dimensional memory (“tape”) where Os and

1s are stored

e In one step, head reads/writes and /or moves one unit

e Yes/no problems (like integer partition)

e A problem is in the class NP if for any “YES” instance there exists a
verification in time polynomial in the number of bits needed to describe

the instance

Example: given integers wq, ws, ..., w,, does there exist a subset J with
S = o
jedJ Jjé&J

Note: We are simply verifying a certificate that somebody gave us

Proxy concept: problems in NP are “well-defined”

e A problem class P is NP-complete if any problem in the class NP

can be reduced to a problem 7P in polynomial time

Digression: NP-hardness

“Turing Machine” model (bit model) of computing

Programs = algorithms use 1-dimensional memory (“tape”) where Os and

1s are stored

e In one step, head reads/writes and /or moves one unit

e Yes/no problems (like integer partition)

e A problem is in the class NP if for any “YES” instance there exists a
verification in time polynomial in the number of bits needed to describe

the instance

Example: given integers wq, wo, ..., w,, does there exist a subset J with
S = S
jeJ Jjé&J

Note: We are simply verifying a certificate that somebody gave us

Proxy concept: problems in NP are “well-defined”

e A problem class P is NP-complete if any problem in the class NP

can be reduced to a problem 7P in polynomial time

e As a consequence, if somebody smart figured a way to solve P in poly-

nomial time, we can then solve every problem in NP in polynomial

time

Digression: NP-hardness

“Turing Machine” model (bit model) of computing

Programs = algorithms use 1-dimensional memory (“tape”) where Os and

1s are stored

e In one step, head reads/writes and /or moves one unit

e Yes/no problems (like integer partition)

e A problem is in the class NP if for any “YES” instance there exists a
verification in time polynomial in the number of bits needed to describe

the instance

Example: given integers wq, wo, ..., w,, does there exist a subset J with
S = S
jeJ Jjé&J

Note: We are simply verifying a certificate that somebody gave us

Proxy concept: problems in NP are “well-defined”

e A problem class P is NP-complete if any problem in the class NP

can be reduced to a problem 7P in polynomial time

e As a consequence, if somebody smart figured a way to solve P in poly-

nomial time, we can then solve every problem in NP in polynomial

time

e Fixamples: traveling salesman problem, 3-SAT, graph coloring, the prob-

lem above

But ... not all NP-hard problems are equally hard

Again: given integers wi, wo, . .., w,, does there exist a subset J with
1 n
S = Y = 1Y,
jed jeJ j=1

It is hard (NP-hard) to answer YES, or NO, exactly

But ... not all NP-hard problems are equally hard

Again: given integers wi, wo, . .., w,, does there exist a subset J with
1 n
S = Y = 1Y,
jed jeJ j=1

It is hard (NP-hard) to answer YES, or NO, exactly

It is not hard to answer YES or NO, approximately:

But ... not all NP-hard problems are equally hard

Again: given integers wi, wo, . .., w,, does there exist a subset J with
1 n
S = Y = 1Y,
jed jeJ j=1

It is hard (NP-hard) to answer YES, or NO, exactly

It is not hard to answer YES or NO, approximately:

Fix 0 < € < 1. Then we can compute a set J

e Such that

1;€§n:wj < ij < 1—2ke§n:wj
J=1 j=1

jeJ

e In time polynomial in 7 and e *

(So approximate feasibility, in “practicable” time)

Problem is weakly NP-hard

Folklore result: QCQP is NP-hard

Let wy,ws, ..., w, be integers, and consider:

W* = min — g 7
i
s.t. E w; x; = 0,
i

1<y <1, 1<i<n.

W* = —n, iff there exists a subset J C {1,...,n} with
Su = S
JjeJ j¢J

e Lavaei & Low (2011), van Hentenryck & Coffrin (2014): AC-OPF is NP-

hard on trees

Take any {—1, 1}-linear program

Take any {—1, 1}-linear program

min clx

st. Ax =0

re{—1,1}"

Take any {—1, 1}-linear program

min ¢’ x
s.t. Ax =0
re{—1,1}"

min clx — ME a:*?
J

st. Ar =0

—1<z; <1, 1<y<n.

(and many other similar transformations)

Take any {—1, 1}-linear program

min ¢’z
st. Ax =0
re{—1,1}"

min clx — ME x?
J

st. Arx =0

(and many other similar transformations)

— linearly constrained QCQP is as hard as any integer programming

problem

Example: TSP, graph coloring, set covering, etc.

N O nice approximation algorithms exist for these

They are called strongly NP-hard

Take any {—1, 1}-linear program

min ¢’z
st. Ax =0
re{—1,1}"

min clx — ME x?
J

st. Arx =0

(and many other similar transformations)

— linearly constrained QCQP is as hard as any integer programming

problem

Example: TSP, graph coloring, set covering, etc.

N O nice approximation algorithms exist for these

They are called strongly NP-hard

A. Verma (2009): AC-OPF is strongly NP-hard.

Even more general than QCQP:

Solving systems of polynomial equations.

Problem: given polynomials p; : R" — R, for 1 <7< m
find x € R" s.t. pj(x) =0, V1

Even more general than QCQP:

Solving systems of polynomial equations.

Problem: given polynomials p; : R" — R, for 1 <7< m
find x € R" s.t. pj(x) =0, V1

Observation. Can be reduced to QCQP.

Example: find a root for 3v%w — v* 4+ 7 = 0.

Even more general than QCQP:

Solving systems of polynomial equations.

Problem: given polynomials p; : R" — R, for 1 <7< m
find x € R" s.t. pj(x) =0, V1

Observation. Can be reduced to QCQP.
Example: find a root for 3v%w — v* 4+ 7 = 0.
Equivalent to the system on variables v, vo, vy, vg, w, y and c:

2

cc =1

V2 — cvy = 0

v —cvy = 0

vovs — cvg = 0
vew —cy = 0

3cy —cvy = —7

This is a polynomial-time reduction

Smale’s 17" problem

Can a zero of n polynomial equations on n unknowns be found
approximately.
on the average in polynomial time?

(abridged)

Smale’s 17" problem

Can a zero of n polynomial equations on n unknowns be found
approximately.
on the average in polynomial time?

(abridged)
What is meant by approximately?

And what do we mean by on the average?

“Approximately”

Q: How do practitioners (e.g. power engineers) solve systems of nonlinear
equations?’

“Approximately”

Q: How do practitioners (e.g. power engineers) solve systems of nonlinear
equations?’

A: Newton-Raphson, of course!

— If we start near a solution, quadratic convergence

“Approximately”

Q: How do practitioners (e.g. power engineers) solve systems of nonlinear
equations?’

A: Newton-Raphson, of course!

— If we start near a solution, quadratic convergence

To solve F'(x) = 0, where F' : R®" — R™
Iterate: zFt! = — [J(:ck)}_l F(zk) + ¢, k=1,...

J(zM)y = gi(=") 1<ij<n

Smale’s 17" problem

Can a zero of n polynomial equations on n unknowns be found
approximately.
on the average in polynomial time?

(abridged)

What is meant by approximate convergence?

Smale’s 17" problem

Can a zero of n polynomial equations on n unknowns be found
approximately.
on the average in polynomial time?

(abridged)
What is meant by approximate convergence?

Answer: convergence to the region of quadratic convergence for Newton-Raphson

Smale’s 17" problem

Can a zero of n polynomial equations on n unknowns be found
approximately.
on the average in polynomial time?

(abridged)
What is meant by approximate convergence?

Answer: convergence to the region of quadratic convergence for Newton-Raphson

What is meant by on the average?

Smale’s 17" problem

Can a zero of n polynomial equations on n unknowns be found
approximately.
on the average in polynomial time?

(abridged)
What is meant by approximate convergence?

Answer: convergence to the region of quadratic convergence for Newton-Raphson

What is meant by on the average?

“On the average” in polynomial time

A QCQP could be quite difficult!
e.g., a unique feasible solution, which additionally is an irrational vector

Example in R?:
r] + x%

2
T + T4

VANAY

1T — T2
a7 + (z2—1)°

IA I
_ O = =

“On the average” in polynomial time

A QCQP could be quite difficult!
e.g., a unique feasible solution, which additionally is an irrational vector

Example in R?:

VANAY

8
— N
+
] B
[N}
[
= 5
[\)
(Al
—_ O = =

“On the average” in polynomial time

A QCQP could be quite difficult!
e.g., a unique feasible solution, which additionally is an irrational vector

but a “nearby” problem instance could be much easier

“On the average” in polynomial time

A QCQP could be quite difficult!
e.g., a unique feasible solution, which additionally is an irrational vector

but a “nearby” problem instance could be much easier

e View a problem as a vector in an appropriate space

“On the average” in polynomial time

A QCQP could be quite difficult!
e.g., a unique feasible solution, which additionally is an irrational vector

but a “nearby” problem instance could be much easier

e View a problem as a vector in an appropriate space

e Endow that space with an appropriate metric
(Bombieri-Weyl Hermitian product)

“On the average” in polynomial time

A QCQP could be quite difficult!
e.g., a unique feasible solution, which additionally is an irrational vector

but a “nearby” problem instance could be much easier

e View a problem as a vector in an appropriate space

e Endow that space with an appropriate metric
(Bombieri-Weyl Hermitian product)

e In that space, uniformly sample a ball (of appropriate radius) around a given problem

“On the average” in polynomial time

A QCQP could be quite difficult!
e.g., a unique feasible solution, which additionally is an irrational vector

but a “nearby” problem instance could be much easier

e View a problem as a vector in an appropriate space

e Endow that space with an appropriate metric
(Bombieri-Weyl Hermitian product)

e In that space, consider the set of problems given by a ball (of appropriate radius) around a given
problem

e We want the algorithm to is fast, on average, in that ball

“On the average” in polynomial time

A QCQP could be quite difficult!
e.g., a unique feasible solution, which additionally is an irrational vector

but a “nearby” problem instance could be much easier

e View a problem as a vector in an appropriate space

e Endow that space with an appropriate metric
(Bombieri-Weyl Hermitian product)

e In that space, consider the set of problems given by a ball (of appropriate radius) around a given
problem

e We want the algorithm to is fast, on average, in that ball

— A Las Vegas algorithm:

“On the average” in polynomial time

A QCQP could be quite difficult!
e.g., a unique feasible solution, which additionally is an irrational vector

but a “nearby” problem instance could be much easier

e View a problem as a vector in an appropriate space

e Endow that space with an appropriate metric
(Bombieri-Weyl Hermitian product)

e In that space, consider the set of problems given by a ball (of appropriate radius) around a given
problem

e We want the algorithm to is fast, on average, in that ball

— A Las Vegas algorithm: it may fail to converge, but with probability zero

Smale’s 17" problem

Can a zero of n polynomial equations on n unknowns be found
approximately.

on the average in polynomial time,

with a uniform algorithm?

(abridged; but we are cheating)

e Beltran and Pardo (2009) — a randomized (Las Vegas) uniform algorithm
that computes an approximate zero in expected polynomial time

e Biirgisser, Cucker (2012) — a deterministic O(n'°¢!°¢™) (uniform) algo-
rithm for computing approximate zeros

e Techniques: Homotopy (path-following method solving a sequence of
problems), Newton’s method

Smale’s 17" problem

Can a zero of n polynomial equations on n unknowns be found
approximately.
on the average in polynomial time?

(abridged; and we are cheating)

e Beltran and Pardo (2009) — a randomized (Las Vegas) uniform algorithm
that computes an approximate zero in expected polynomial time

e Biirgisser, Cucker (2012) — a deterministic O(n!°¢!°¢™) (uniform) algo-
rithm for computing approximate zeros

e Techniques: Homotopy (path-following method solving a sequence of
problems), Newton’s method

But we are cheating: All of this is over C", not R"

Smale’s 17" problem

Can a zero of n polynomial equations on n unknowns be found
approximately.
on the average in polynomial time?

(abridged; and we are cheating)

e Beltran and Pardo (2009) — a randomized (Las Vegas) uniform algorithm
that computes an approximate zero in expected polynomial time

e Biirgisser, Cucker (2012) — a deterministic O(n!°¢!°¢™) (uniform) algo-
rithm for computing approximate zeros

e Techniques: Homotopy (path-following method solving a sequence of
problems), Newton’s method

But we are cheating: All of this is over C", not R"

So what can be done over the reals?

Smale’s 17" problem

Can a zero of n polynomial equations on n unknowns be found
approximately.
on the average in polynomial time?

(abridged; and we are cheating)

e Beltran and Pardo (2009) — a randomized (Las Vegas) uniform algorithm
that computes an approximate zero in expected polynomial time

e Biirgisser, Cucker (2012) — a deterministic O(n!°¢!°¢™) (uniform) algo-
rithm for computing approximate zeros

e Techniques: Homotopy (path-following method solving a sequence of
problems), Newton’s method

But we are cheating: All of this is over C", not R"

So what can be done over the reals? Let’s start with “simple” results.

Simplest example: S-Lemma (abridged)
Let f, g : R® — R be quadratic functions (degree < 2 polynomials).
Suppose there exists & € R™ such that g(&) > 0. Then
f(x) > 0 whenever g(x) >0
if and only
there exists =~ > 0 such that f(x) > vg(x) forall x & R".
Yakubovich (1971), also much earlier, related work

~ acts as a Lagrange multiplier.

Quick aside:

Suppose we want to solve: F* = min{ f(x) : g(x) > 0}; here f,g quadratics

Quick aside:

Suppose we want to solve: min{ f(x) : g(x) > 0}; here f, g quadratics
Algorithm. (Binary search)

1. Guess a real 6.

2. Check if f(x) —0 >0, V xst. g(x)>0.

3. If “yes”, we know F* > 0;if not, F* < 0.

4. Either way we can update 6, and repeat. Works under compactness of {x : g(x) > 0 }.

Simplest example: S-Lemma (abridged)

Let f, g : R®™ — R be quadratic functions (degree < 2 polynomials).
Suppose there exists & € R™ such that g(&) > 0. Then

f(x) > 0 whenever g(x) >0
if and only

there exists =~ > 0 such that f(x) > vg(x) forall x & R".
Yakubovich (1971), also much earlier, related work

~ acts as a Lagrange multiplier.

Corollary: Can solve
min{f(z) : g(z) > 0}

in polynomial time (using semidefinite programming)

Simplest example: S-Lemma (abridged)

Let f, g : R®™ — R be quadratic functions (degree < 2 polynomials).
Suppose there exists & € R™ such that g(&) > 0. Then

f(x) > 0 whenever g(x) >0
if and only

there exists =~ > 0 such that f(x) > vg(x) forall x & R".
Yakubovich (1971), also much earlier, related work

~ acts as a Lagrange multiplier.

Corollary: Can solve
min{f(z) : g(z) > 0}

in polynomial time (using semidefinite programming)

— Time for some math

Want to solve: min{ f(x) : g(x) > 0}

Given a real 0, is it the the case that f(x) — 6 > 0 whenever g(x) > 07

Given a real 0, is it the the case that f(x) — 6 > 0 whenever g(x) > 07

S-Lemma: iff there exists real v > 0s.t. f(x) — 6 —vyg(x) >0 Vzx €R"”

Given a real 0, is it the the case that f(x) — 6 > 0 whenever g(x) > 07
S-Lemma: iff there exists real v > 0s.t. f(x) — 6 —vyg(x) >0 Vzx €R"”

Notation: f(z) = xTAx + 2aTx + ay, g(x) = =T Bz + 2bTx + by,

Given a real 0, is it the the case that f(x) — 6 > 0 whenever g(x) > 07
S-Lemma: iff there exists real v > 0s.t. f(x) — 6 —vyg(x) >0 Vzx €R"”
Notation: f(z) = xTAx + 2aTx + ay, g(x) = =T Bz + 2bTx + by,

So S-Lemma statement is:

A—~yB a—~b

(27, 1) (‘f) > 0 Va2 eR"
(@ — b)Yt ag— by — 0

Given a real 0, is it the the case that f(x) — 6 > 0 whenever g(x) > 07
S-Lemma: iff there exists real v > 0s.t. f(x) — 6 —vyg(x) >0 Vzx €R"”
Notation: f(z) = xTAx + 2aTx + ay, g(x) = =T Bz + 2bTx + by,

So S-Lemma statement is:

A—~yB a—~b

(27, 1) (‘f) > 0 Va2 eR"
(@ — b)Yt ag— by — 0
Can be proved that this is equivalent to saying:
A—~B a—~b
= 0

(a—~b)" ag—~by— 0

Given a real 0, is it the the case that f(x) — 6 > 0 whenever g(x) > 07
S-Lemma: iff there exists real v > 0s.t. f(x) — 6 —vyg(x) >0 Vzx €R"”
Notation: f(z) = xTAx + 2aTx + ay, g(x) = =T Bz + 2bTx + by,

So S-Lemma statement is:

A—~yB a—~b

(27, 1) (‘f) > 0 Va2 eR"
(@ — b)Yt ag— by — 0
Can be proved that this is equivalent to saying:
A—~B a—~b
= 0
(@ —~b)" ag— by —0
So in short, min{f(x) : g(x) > 0} is equivalent to
max 0
subject to
A—~vB a—~b
= 0

(a—~b)T ag— by — 0
v>0

which is an SDP (semidefinite program) on variables -, 6.

Many applications for the S-Lemma

e Control Theory

e Dynamical Systems

e Robust error estimation
e Robust optimization

An application: the trust-region subproblem

min{f(z) : g(z) < 0}

can be solved in polynomial time, where f, g quadratics, g convex

Scale, rotate, translate:

min{f(z) : ||z|| <1}

Digression: application of trust-region subproblem in engineering

— Unconstrained optimization min{f(z) : * € R"}
e f(x) can be antyhing

e constraints mapped into f(x) by using penalties

Digression: application of trust-region subproblem in engineering

— Unconstrained optimization min{f(z) : * € R"}
e f(x) can be antyhing
e constraints mapped into f(x) by using penalties

Example: min{ g(zy,x2) : 0 < x; < 1}

Digression: application of trust-region subproblem in engineering

— Unconstrained optimization min{f(z) : * € R"}
e f(x) can be antyhing
e constraints mapped into f(x) by using penalties

Example: min{ g(zy,x2) : 1/2 < xjandax, < 1}

becomes:

min g(x1,z2) + alog(zy —1/2) + alog(l — x9)

subject to: x1,x2 unconstrained

o > 0 a “barrier” parameter

ANN
/
i

Digression: application of trust-region subproblem in engineering

— Unconstrained optimization min{f(z) : * € R"}

Digression: application of trust-region subproblem in engineering

— Unconstrained optimization min{f(z) : * € R"}
Algorithm

e Given an iterate w?, sample f(«) in a neighborhood |z — z*|| < A.

® = sample

e Get pairs (y', f(y')), (v, f(¥?)),--., (y™, f(y™))

e Using these samples, construct a quadratic “model” of f(x)
(model = spline, least squares estimate, etc).

Digression: application of trust-region subproblem in engineering

— Unconstrained optimization min{f(z) : * € R"}
Algorithm

e Given an iterate w?, sample f(«) in a neighborhood |z — z*|| < A.

® = sample

e Get pairs (y', f(y')), (v, f(¥?)),--., (y™, f(y™))

e Using these samples, construct a quadratic “model” of f(x)
(model = spline, least squares estimate, etc).

e Call this model: Q(x)
e Solve: min{ Q(x) : ||z — w'|| < A}. This is the trust-region subproblem.

e The solution becomes w*?!.
Or: conduct a line-search from w? to the solution so as to compute w!*?.

Digression: application of trust-region subproblem in engineering

— Unconstrained optimization min{f(z) : * € R"}
Algorithm

e Given an iterate w?, sample f(«) in a neighborhood |z — z*|| < A.

® = sample

e Get pairs (y', f(y')), (v, f(¥?)),--., (y™, f(y™))

e Using these samples, construct a quadratic “model” of f(x)
(model = spline, least squares estimate, etc).

e Call this model: Q(x)
e Solve: min{ Q(x) : ||z — w'|| < A}. This is the trust-region subproblem.

e The solution becomes w*?!.
Or: conduct a line-search from w? to the solution so as to compute w!*?.

e General purpose codes: KNITRO, LOQO have been used on OPF.

An application: the trust-region subproblem

min{f(z) : g(z) < 0}

can be solved in polynomial time, where f, g quadratics, g convex

Scale, rotate, translate:
min{ f(z) : [[z] < 1}

can be solved in poly time — log e™1

Y. Ye (1992) — logloge™*

How about extensions of the trust-region subproblem?

Sturm-Zhang (2003)
Where f(x) is a quadratic,

min f(x)
st x| <1
a'x < b (one linear side constraint)

can be solved in polynomial time, as can

min f(x)
8.t x| <1
|z —2"|| < ry (one additional convex ball constraint)

Ye-Zhang (2003)

min f(x)
st |lzf] <1
alx < b i=1,2
(alx —b))(azz —by) = 0

(two linear side constraints, but at least one binding)

Anstreicher-Burer (2012)

In polynomial time, one can solve a problem of the form

min 21 Qx +clx

st. |z <1
aiTx < b 1=1,2

provided the two linear constraints are parallel:

W/ A 1 two linear constraints

ball constraint

Anstreicher-Burer (2012)

In polynomial time, one can solve a problem of the form

min 21 Qx +clx

st. |z <1
aiTx < b 1=1,2

provided the two linear constraints are parallel:

W/ A 1 two linear constraints

ball constraint

—min{2'Qz +clz : 1<z <u, |z <1}

Anstreicher-Burer (2012)

In polynomial time, one can solve a problem of the form

min 21 Qx +clx

st. |z <1
aiTx < b 1=1,2

provided the two linear constraints are parallel:

W/ A 1 two linear constraints

ball constraint

—min{z'Qr+c'z 1<z <wu, |z <1} (%)

restate as: min ZQinij + c'x

st. Xpn+lu < (I+u)x
1 X1 —lz]| < x1—1
|lur — X1|] < u—axy
> X<
j
X =zt

T

Equivalent to problem (*) ? Yes, if X = 2", ie. a rank-1 solution

Anstreicher-Burer (2012)

In polynomial time, one can solve a problem of the form

min 21 Qx +clx

st x| <1
aiTx < b 1=1,2

provided the two linear constraints are parallel:

W/ A 1 two linear constraints

ball constraint

—min{z'Qr+c'z 1<z <wu, |z <1} (%)

restate as: min Zqinij + r — Zi,j gijriz; + c'x
st. Xyi+ilu < (l + u)a:l
| X1—lz|| < x1—1
|lur — X 1| < u—ay
> X<t — 2 <1
X = xa’

T

Equivalent to problem (*) ? Yes, if X = xza", ie. a rank-1 solution

Anstreicher-Burer (2012)

In polynomial time, one can solve a problem of the form

min 21 Qx +clx
st ||zl

T
a; T

IA A
&
I
\.l—‘
NG

provided the two linear constraints are parallel:

W/ A 1 two linear constraints

ball constraint

—min{z'Qr+c'z 1<z <wu, |z <1} (%)

restate as: min ZQinij + Tz
st. Xpn+lu < (I+u)x
1 X1 —lz]| < x1—1
|lur — X1|] < u—axy
> X<
j
X = xx’
T

Lemma: This problem has an optimal solution with X = xz*, i.e. a rank-1 solution.

Burer-Yang (2012)
In polynomial time, one can solve a problem of the form
min 27 Qz +
st x| <
alr < b 1<i<m

if no two linear inequalities are simultaneously binding in the feasible region

N

Burer-Yang (2012)
In polynomial time, one can solve a problem of the form
min 27 Qz +
st x| <
alr < b 1<i<m

if no two linear inequalities are simultaneously binding in the feasible region

N

7

Lemma: the following problem has an optimal solution with X = zz7.

min E qi; Xij + lr
0]

st. Xpy+lu < (I4+uw)x
|bir — Xa|| < b —alw i<m
bib; —b.alx —balz +al Xa;, < 0 1< j3<m
J J" 9 7 J

ZijSl s XELUZCT

J

Generalizations?
(B. and Alex Michalka, SODA 2014)

min 2T Qz + 'z

st o=l <rn, heS,
|z — pnl| =70, h €K,
reP ={zeR": Az <b}

Theorem.
For each fixed |S|, | K| can be solved in polynomial time if either

(1) |S| > 1 and polynomially large number of faces of P intersect

(z eR": o — mll <7},
hes

or

(2) |S| = 0 and the number of rows of A is bounded.

Generalizations?
(B. and Alex Michalka, SODA 2014)

min 2T Qz + 'z

st o=l <rn, heS,
|z — pnl| =70, h €K,
reP ={zeR": Az <b}

Theorem.
For each fixed |S|, | K| can be solved in polynomial time if either

(1) |S| > 1 and polynomially large number of faces of P intersect

(z eR": o — mll <7},
hes

or

(2) |S| = 0 and the number of rows of A is bounded.

e Does not use semidefinite programming

e Note: the curvature in all quadratics is the same

Why not general QCQP?

(QCQP):
s.t.

Why not general QCQP?

min 27 Qz + 2’z
ol Ay + 2biTx +r >0
xr € R"

i=1,...

Why not general QCQP?

(QCQP): min 2’ Qx + 2z
s.t. xTAix+2biTx+ri >0 1=1,....m
xr € R"

—s form the semidefinite relaxation

(SR): min (0 CT).X

c Q
e
s.t. (Z i@li).x >0 i=1,....m

X>0, X 1=1.
Here, for symmetric matrices M, NN,

MeN = Z My N
h,k

Why not general QCQP?

(QCQP): min 2’ Qx + 2z
s.t. xTAix+2biTx+ri >0 1=1,....m
xr € R"

—s form the semidefinite relaxation

(SR): min (0 CT).X

c Q
e
s.t. (Z i@li).x >0 i=1,....m

X>0, X 1=1.
Here, for symmetric matrices M, NN,

MeN = Z My N
h,k

Why do we call it a relaxation?

Why not general QCQP?

(QCQP): min 2’ Qx + 2z
s.t. xTAix+2biTx+n >0 1=1,....m
xr € R"

—s form the semidefinite relaxation

(SR): min (0 CT).X

c Q
e
s.t. (Z i@li).x >0 i=1,....m

X>0, X 1=1.
Here, for symmetric matrices M, NN,

MeN = Z My N
h,k

Why do we call it a relaxation?

Given x feasible for QCQP, the matrix (1,z7) < i) feasible for SR and with the same value

Why not general QCQP?

(QCQP): min 2’ Qx + 2z
s.t. xTAix+2biTx+n >0 1=1,....m
xr € R"

—s form the semidefinite relaxation

(SR): min (0 CT).X

c Q
e
s.t. (Z i@li).x >0 i=1,....m

X>0, X 1=1.
Here, for symmetric matrices M, NN,

MeN = Z My N
h,k

Why do we call it a relaxation?

Given x feasible for QCQP, the matrix (1,z7) < i) feasible for SR and with the same value

So the value of problem SR is a lower bound for QCQP

Why not general QCQP?

(QCQP): min 2’ Qx + 2z
s.t. xTAix+2biTx+n >0 1=1,....m
xr € R"

—s form the semidefinite relaxation

(SR): min (0 CT).X

c Q
e
s.t. (Z i@li).x >0 i=1,....m

X>0, X 1=1.
Here, for symmetric matrices M, NN,

MeN = Z My N
h,k

Why do we call it a relaxation?

Given x feasible for QCQP, the matrix (1,z7) < i) feasible for SR and with the same value
So the value of problem SR is a lower bound for QCQP

So if SR has a rank-1 solution, the lower bound is exact.

Why not general QCQP?

(QCQP): min 2’ Qx + 2z
s.t. xTAix+2biTx+n >0 1=1,....m
xr € R"

—s form the semidefinite relaxation

(SR): min (0 CT).X

c Q
e
s.t. (Z i@li).x >0 i=1,....m

X>0, X 1=1.
Here, for symmetric matrices M, NN,

MeN = Z My N
h,k

Why do we call it a relaxation?

Given x feasible for QCQP, the matrix (1,z7) < i) feasible for SR and with the same value
So the value of problem SR is a lower bound for QCQP
So if SR has a rank-1 solution, the lower bound is exact.

Unfortunately, SR typically does not have a rank-1 solution.

Theorem (Pataki, 1998):

An SDP

(SR): min M e X
st. N'eX >b, i=1,....,m
X >~ 0, Xann X n matrix,

always has a solution of rank O(m'/?), and this result is best possible.

Generalizations?
(B. and Alex Michalka, SODA 2014)

min 2T Qz + 'z

st. |lo—pp|| <rp, heS,
|z = pnll =70, hEK,
reP ={zeR": Az <b}

Theorem.
For each fixed |S|, | K| can be solved in polynomial time if either

(1) |S| > 1 and polynomially large number of faces of P intersect

(z eR": o — mll <71},
hes

or

(2) |S| = 0 and the number of rows of A is bounded.

e Does not use semidefinite programming

e Note: the curvature in all quadratics is the same

The trust-region subproblem:.

min 2’ Qz+ 'z

st. Jlo—pl <7

The trust-region subproblem:.

min 2’ Qz+ 'z

st. Jlo—pl <7

Generalization: CDT (Celis-Dennis-Tapia) problem

min 2’ Qux + ¢
s.t. xTle + c{x + d
ITQQZU + ch + dy
where Q1 > 0, Q2 >0

IA

IA

Even more general than QCQPs
Barvinok (STOC 1992):

For each fixed p > 1, there is a polynomial-time algorithm for deciding feasibility of a system

Mz = 0, 1<i<p,
|z = 1, zeR"

where the M, are general matrices.

Even more general than QCQPs
Barvinok (STOC 1992):

For each fixed p > 1, there is a polynomial-time algorithm for deciding feasibility of a system

Mz = 0, 1<i<p,
|z = 1, zeR"

where the M, are general matrices.

e Non-constructive. Algorithm says “yes” or “no.”

e Computational model?

Stated as: computation over the reals using infinite precision

Even more general than QCQPs
Barvinok (STOC 1992):

For each fixed p > 1, there is a polynomial-time algorithm for deciding feasibility of a system

Mz = 0, 1<i<p,
|z = 1, zeR"

where the M, are general matrices.

e Non-constructive. Algorithm says “yes” or “no.”

e Computational model?

Stated as: computation over the reals using infinite precision

e There is a separate community in mathematics dealing with these problems
e Methodology does not use semidefinite programming
e Instead, uses algebraic geometry

e Explicit emphasis in handling “cases”

A (better?) alternative: e-feasibility

For each fixed p > 1, given a system

Mz = 0, 1<i<p,
|lz|| = 1, xzeR"

and given 0 < € < 1, either

e Prove that the system is infeasible, or

e Output & € R™ with

in time polynomial in the data and in loge™!.

A (better?) alternative: e-feasibility

For each fixed p > 1, given a system

cIMx = 0, 1<i<p,
|lz|| = 1, xzeR"

and given 0 < € < 1, either

e Prove that the system is infeasible, or

e Output & € R™ with

—€ S .CCTMZ'
I—e < 2|

in time polynomial in the data and in loge™!.

Two issues: Constructiveness, and e-feasibility

Modification to Barvinok’s result

Assume that for each fixed p > 1, there is an algorithm that given a system
Mz = 0, 1<i<p,
|lz|| = 1, xzeR"
and given 0 < € < 1, either

e Proves that the system is infeasible, or

e Proves that is e-feasible,

in time polynomial in the data and in loge!.

(so still nonconstructive)

Modification to Barvinok’s result

Assume that for each fixed p > 1, there is an algorithm that given a system

Mz = 0, 1<i<p,
|lz|| = 1, xzeR"

and given 0 < € < 1, either

e Proves that the system is infeasible, or

e Proves that is e-feasible,

in time polynomial in the data and in loge!.
(so still nonconstructive)

Assuming such an algorithm exists ...

Theorem.

For each fixed m > 1 there is a polynomial-time algorithm that, given an optimization problem
min fo(z) = 2TQox + clx

S.t. a:Tin—i—csz—}—di <0 1<1<m,

where Q1 > 0, and 0 < € < 1, either

(1) proves that the problem is infeasible,

or

(2) computes an e-feasible vector & such that there exists no feasible € R™ with fo(x) < f(&) — €.

The complexity of the algorithm is polynomial in the number of bits in the data and in log e~}

Theorem.

For each fixed m > 1 there is a polynomial-time algorithm that, given an optimization problem
min fo(z) = 2TQox + clx

S.t. a:Tin—i—csz—}—di <0 1<1<m,

where Q1 > 0, and 0 < € < 1, either

(1) proves that the problem is infeasible,

or

(2) computes an e-feasible vector & such that there exists no feasible € R™ with fo(x) < f(&) — €.

The complexity of the algorithm is polynomial in the number of bits in the data and in log e~}

— Related algebraic geometry work by Grigoriev, Pasechnik, other Russians

Back to S-Lemma, +
Let f, g : R®™ — R be quadratic functions (degree < 2 polynomials).
Suppose there exists & € R™ such that g(&) > 0. Then

f(x) > 0 whenever g(x) >0 iffexists v >0 st. f(x) > vg(x) foral x €& R™

Back to S-Lemma, +
Let f, g : R®™ — R be quadratic functions (degree < 2 polynomials).
Suppose there exists & € R™ such that g(&) > 0. Then
f(x) > 0 whenever g(x) >0 iffexists v >0 st. f(x) > vg(x) foral x €& R™

ie., iff exists v >0 s.t. (f—~g)(x) > 0 forall x € R™

Back to S-Lemma, +
Let f, g : R®™ — R be quadratic functions (degree < 2 polynomials).
Suppose there exists & € R™ such that g(&) > 0. Then
f(x) > 0 whenever g(x) >0 iffexists v >0 st. f(x) > vg(x) foral x €& R™
ie., iff exists v >0 s.t. (f—~g)(x) > 0 forall x € R™
in other words, Hilbert (1888): iff exists v > 0, Sp(xz) s.t. f(x) = So(x) + ~vg(x)

where Sp(x) is a sum of squares of polynomials

Back to S-Lemma, +
Let f, g : R®™ — R be quadratic functions (degree < 2 polynomials).
Suppose there exists & € R™ such that g(&) > 0. Then
f(x) > 0 whenever g(x) >0 iffexists v >0 st. f(x) > vg(x) foral x €& R™
ie., iff exists v >0 s.t. (f—~g)(x) > 0 forall x € R™
in other words, Hilbert (1888): iff exists v > 0, Sp(xz) s.t. f(x) = So(x) + ~vg(x)

where Sp(x) is a sum of squares of polynomials ! This paper started the field of algebraic
geometry

Back to S-Lemma, +

Let f, g : R®™ — R be quadratic functions (degree < 2 polynomials).

Suppose there exists & € R™ such that g(Z) > 0. Then

f(x) > 0 whenever g(x) >0 iffexists v >0 st. f(x) > vg(x) forall x & R™
ie., iff exists v >0 s.t. (f—~g)(x) > 0 foral x €& R™

in other words, Hilbert (1888): iff exists v > 0, Sp(x) s.t. f(x) = So(x) + ~vg(x)

where Sp(x) is a sum of squares of polynomials ! This paper started the field of algebraic geometry

And how about generalizations of the S-Lemma?

Given quadratics Qo(x), Q1(x), ..., Qm(x) with m > 2, is it true that
Qo(x) > 0 whenever Q;(x) >0, 1<1<m,

iff exist v, >0 st. Qo(x) > >t %Qi(x) forall =& R"?

Back to S-Lemma, +

Let f, g : R®™ — R be quadratic functions (degree < 2 polynomials).

Suppose there exists & € R™ such that g(Z) > 0. Then

f(x) > 0 whenever g(x) >0 iffexists v >0 st. f(x) > vg(x) forall x & R™
ie., iff exists v >0 s.t. (f—~g)(x) > 0 foral x €& R™

in other words, Hilbert (1888): iff exists v > 0, Sp(x) s.t. f(x) = So(x) + ~vg(x)

where Sp(x) is a sum of squares of polynomials ! This paper started the field of algebraic geometry

And how about generalizations of the S-Lemma?

Given quadratics Qo(x), Q1(x), ..., Qm(x) with m > 2, is it true that
Qo(x) > 0 whenever Q;(x) >0, 1<1<m,

iff exist ~; >0, Sp(xz), st. Qo(x) = So(x) + > i, vQi(x), So(x) = asum of squares?

Back to S-Lemma, +

Let f, g : R®™ — R be quadratic functions (degree < 2 polynomials).

Suppose there exists & € R™ such that g(Z) > 0. Then

f(x) > 0 whenever g(x) >0 iffexists v >0 st. f(x) > vg(x) forall x & R™
ie., iff exists v >0 s.t. (f—~g)(x) > 0 foral x €& R™

in other words, Hilbert (1888): iff exists v > 0, Sp(x) s.t. f(x) = So(x) + ~vg(x)

where Sp(x) is a sum of squares of polynomials ! This paper started the field of algebraic geometry

And how about generalizations of the S-Lemma?

Given quadratics Qo(x), Q1(x), ..., Qm(x) with m > 2, is it true that
Qo(x) > 0 whenever Q;(x) >0, 1<1<m,

iff exist ~; >0, Sp(xz), st. Qo(x) = So(x) + > i, vQi(x), So(x) = asum of squares?

No.

Back to S-Lemma, +

Let f, g : R® — R be quadratic functions (degree < 2 polynomials).

Suppose there exists & € R™ such that g(&) > 0. Then

f(x) > 0 whenever g(x) >0 iffexists v >0 st. f(x) > vg(x) forall x € R™
ie., iff exists v > 0 s.t. (f—~g)(x) > 0 forall x € R™

in other words, Hilbert (1888): iff exists v > 0, Sp(z) s.t. f(x) = So(x) + ~vg(x)

where Sp(x) is a sum of squares of polynomials ! This paper started the field of algebraic geometry

And how about generalizations of the S-Lemma?

Given quadratics Qo(x), Q1(x), ..., Qum(x) with m > 2. is it true that
Qo(x) > 0 whenever Q;(x) >0, 1 <1< m,
iff exist ~; > 0, So(z), st. Qo(x) = So(x) + >.io;Y¥Qi(x), So(x) = asum of squares?
No.
However*: Qo(xz) > 0 whenever Q;(x) >0, 1 <1i < m,

iff exist So(x), S1(x),...Sm(z) st. Qo(x) = So(x) + > v, Si(x)Qi(x)

where each S;(x) is a sum of squares of polynomials. Putinar (1993).

Back to S-Lemma, +

Let f, g : R® — R be quadratic functions (degree < 2 polynomials).
Suppose there exists & € R™ such that g(&) > 0. Then
f(x) > 0 whenever g(x) >0 iffexists v >0 st. f(x) > vg(x) foral x € R™
ie., iff exists v >0 s.t. (f—~g)(x) > 0 foral x € R™
in other words, Hilbert (1888): iff exists v > 0, Sp(x) s.t. f(x) = So(x) + vg(x)
where Sp(x) is a sum of squares of polynomials ! This paper started the field of algebraic geometry
And how about generalizations of the S-Lemma?
Given quadratics Qo(x), Q1(x), ..., Qm(x) with m > 2. is it true that
Qo(x) > 0 whenever Q;(x) >0, 1 <1< m,

iff exist ~v; > 0, So(z), st. Qo(x) = So(x) + > ;v Y%Qi(x), So(x) = asum of squares?

No.
However*: Qo(xz) > 0 whenever Q;(x) >0, 1<1i<m,
iff exist So(x), S1(x),...Sm(z) st. Qo(x) = So(x) + > v, Si(x)Qi(x)

where each S;(x) is a sum of squares of polynomials. Putinar (1993).
*={r eR": Qi(x) >0, 1 <i<m} is bounded (and represented as such)

More complete statement of Putinar’s theorem — still abridged
e Given polynomials Py(x), G1(x),...,Gn(x), T € R™,

e One of the Gj(x) being ||z]|* < R?

More complete statement of Putinar’s theorem — still abridged
e Given polynomials Py(x), Gi(x),...,Gn(x), x € R",
e One of the Gj(x) being ||z]|* < R?
e Then: FPy(x) >0 in {x : Gi(x) >0, 1 <i<m} implies:

Py(z) = So(x) + X7, Si(®)Gi(w)

where each S;(«) is a sum of squares of polynomials

More complete statement of Putinar’s theorem — still abridged
e Given polynomials Py(x), G1(x),...,Gn(x), T € R™,
e One of the Gj(x) being ||z]|* < R?

e Then: FPy(x) >0 in {x : Gi(x) >0, 1 <i<m} implies:

Py(z) = So(x) + X7, Si(®)Gi(w)

where each S;(«) is a sum of squares of polynomials

Questions

e What are the S;(x)? Can we compute them efficiently?

More complete statement of Putinar’s theorem — still abridged
e Given polynomials Py(x), Gi(x),...,Gn(x), x € R",
e One of the Gj(x) being ||z]|* < R?
e Then: FPy(x) >0 in {x : Gi(x) >0, 1 <i<m} implies:

Py(z) = So(x) + X7, Si(®)Gi(w)

where each S;(«) is a sum of squares of polynomials

Questions

e What are the S;(x)? Can we compute them efficiently?

e Can we at least estimate them? Can we say anything about their degree?

More complete statement of Putinar’s theorem — still abridged
e Given polynomials Py(x), Gi(x),...,Gn(x), x € R",
e One of the Gj(x) being ||z]|* < R?
e Then: FPy(x) >0 in {x : Gi(x) >0, 1 <i<m} implies:

Py(z) = So(x) + X7, Si(®)Gi(w)

where each S;(«) is a sum of squares of polynomials

Questions

e What are the S;(x)? Can we compute them efficiently?

e Can we at least estimate them? Can we say anything about their degree?

Nie and Schweighofer (2005): upper bound on the max degree, as a function of the Py, Gy, . ..

More complete statement of Putinar’s theorem — still abridged
e Given polynomials Py(x), Gi(x),...,Gn(x), x € R",
e One of the Gj(x) being ||z]|* < R?
e Then: FPy(x) >0 in {x : Gi(x) >0, 1 <i<m} implies:

Py(z) = So(x) + X7, Si(®)Gi(w)

where each S;(«) is a sum of squares of polynomials

Questions

e What are the S;(x)? Can we compute them efficiently?

e Can we at least estimate them? Can we say anything about their degree?

Nie and Schweighofer (2005): upper bound on the max degree, as a function of the Py, Gy, . ..

e How can Putinar’s result help us solve

min Fy(x)
s.t. Gi(x) > 0, 1<i<m?

P*

min
S.t.

Po(x)

1 <1< m?

P* = min Py(x)
s.t. Gi(x) > 0, 1<i<m?

Idea: constrain the degrees of the sum-of-square “certificate” polynomials S;(x)

P* = min Py(x)
s.t. Gi(x) > 0, 1<i<m?

Idea: constrain the degrees of the sum-of-square “certificate” polynomials S;(x)

Pick an integer t > 0, and define
P = sup p
st. Po(x) — p = So(x) + >, Si(z)Gi(x)
each S;(xz) SOS

deg(So(z)) < 2t, deg(Si(z)gi(x)) < 2t.

P* = min Py(x)
s.t. Gi(x) > 0, 1<i<m?

Idea: constrain the degrees of the sum-of-square “certificate” polynomials S;(x)
Pick an integer t > 0, and define
P = sup p
st. Po(x) — p = So(x) + >, Si(z)Gi(x)
each S;(x) SOS

deg(So(z)) < 2t, deg(Si(z)gi(x)) < 2t.
o PO < P

e P® — P*as t — +oo (finite convergence)

e Does this help?

sup p
Py(z) — p = So(w) + >.;7, Si(x)Gi(w)
each S;(xz) SOS

deg(So(z)) < 2t, deg(Si(z)gi(x)) < 2t.

st. Po(x) — p = So(x) + >0, Si(x) Gi(x)

Here, blue polynomials are known, black polynomials are unknown

Example:

(cxi + Bxizs +vyx1) (1 + 222+ 1)
= awi’ + (2 —|—,8)$%CE2 +

2Bz + (a+~v)x? + (B+ 2v)z122 + Y21

P(t) = sup p

st. Po(x) — p = So(x) + >ir; Si(x) Gi(x)

each S;(x) SOS

deg(So(z)) < 2t, deg(Si(x)gi(x)) < 2t.

FACT: P® can be computed as a semidefinite program of dimension O(n?)

FACT: Checking whether a given polynomial F'(x) is SOS can be stated as an SDP

P = sup p
st. Po(x) — p = So(z) + D", Si(x)Gi(x)
each S;(xz) SOS
deg(So(z)) < 2t, deg(Si(z)gi(x)) < 2t.
FACT: P® can be computed as a semidefinite program of dimension O(n?)

FACT: Checking whether a given polynomial F'(x) is SOS can be stated as an SDP

Example:

(22 4+ 22y +)" = (2 + 221 + x2) (2F + 221 + 22)

(mf + 2z, + :132) = (a:% + Owg + 0x1xe + 281 + T2 + O) =

(o)

2 .2
(fL‘p Iryy T1XL2, L1y T2, 1)

Lo

(21 + 221 + 9)

2 .2
(351’ Iy, T1TL2, L1y T2, 1)

2
S0 (333 + 2x1 + 332) = (33%7 wga L1L2y L1y L2,]-)

(1, 0,0, 2,1, 0)

2
[%)
Ly
L1L2

i)

\ 7

(21 + 201 + 29) =

2
S0 (333 + 2x1 + 332) = (33%7 wga L1L2y L1y L2,]-)

2 .2
(3317 Ly, T1L2, L1y T2, 1)

N O O
o O O O OO
o o O O OO
ON KR OON

(

—

)

O NOOH

(1, 0,0, 2,1, 0)

S = NOO =

2 .2
(351’ Iy, T1TL2, L1y T2, 1)

2
[21
Ly
L1L2
I

T2

2
[%)
Ly
L1L2

i)

\ 1/

\ 7

(1)
0
2

Lo

(SE% + 214 +5L’2) = ($%3 333, T1T2, T1, To, 1)

1 (]
B A
) 0 1
So (@} +2x1 +x2)" = (2], 3, T1T2, T1, T2, 1) 2 | (1:0:0,2,1,0) ;12 B
1
0

—

100210]
/000000\/@\
000O0OO0OO L1T2
(x3, x3, 122, T1, T2, 1) 200420 L1
100210 T2
\oooooo/\ 1)

So: if a given polynomial F'(x,x2) is a sum of squares of quadratic polynomials in @1, x5, then:

(1)
0
2

Lo

(ﬁ + 214 +5L’2) = («’Dfa wé, T1T2, T1, To, 1)

1 (]
B A
) 0 1
So (] +2x1 +@2)" = (2}, 23, T1T2, T1, T2, 1) 2 |10, 0,21,0) ;12 -
1
0

~

100210]
/000000\/@\
000O0OO0OO L1T2
(x3, x3, 122, T1, T2, 1) 200420 L1
100210 T2
\oooooo/\ 1)

So: if a given polynomial F'(x,x2) is a sum of squares of quadratic polynomials in @1, x5, then:

2
[
Ly
L1L2

F(xy,25) = (23, 22, x122, 1, T2, 1), times a PSD matrix, times
1

I2

\ 1)

Something different

Consider the optimization problem

ff* = min f(x) : € K

where f(x) continuous, K C R" compact

Something different

Consider the optimization problem

ff* = min f(x) : € K

where f(x) continuous, K C R" compact

fr < flx), VeekK

Something different

Consider the optimization problem

ff* = min f(x) : € K

where f(x) continuous, K C R" compact

fr < flx), VeekK

so if p is a measure over K, i.e. /du =1,
K

Something different

Consider the optimization problem

ff* = min f(x) : € K

where f(x) continuous, K C R" compact

fr < flx), VeekK

so if p is a measure over K, i.e. /du = 1,then f* < E, f(x)
K

Something different

Consider the optimization problem

ff* = min f(x) : € K
where f(x) continuous, K C R" compact

fr < flx), VeekK

so if p is a measure over K, i.e. /du = 1,then f* < E, f(x)
K

and so
fr < inf E, f(x)

Something different

Consider the optimization problem

ff* = min f(x) : € K
where f(x) continuous, K C R" compact
fr < f(®), VeekK
so if p is a measure over K, i.e. /Kdu = 1,then f* < E, f(x)
and so

fr < inf E, f(x)

Suppose y € K has f(y) = f*,

Something different

Consider the optimization problem

ff* = min f(x) : € K
where f(x) continuous, K C R" compact
fr < f(®), VeekK
so if p is a measure over K, i.e. /Kdu = 1,then f* < E, f(x)
and so

fr < inf E, f(x)

Suppose y € K has f(y) = f*, andlet d, be the measure with weight 1 at y

Something different

Consider the optimization problem

ff* = min f(x) : € K

where f(x) continuous, K C R" compact

fr < flx), VeekK

so if p is a measure over K, i.e. /du = 1,then f* < E, f(x)
K
and so

fr < inf E, f(x)

Suppose y € K has f(y) = f*, andlet d, be the measure with weight 1 at y

Then f* = f(y) = Es, f(x)

Something different

Consider the optimization problem

ff* = min f(x) : € K

where f(x) continuous, K C R" compact

fr < flx), VeekK

so if p is a measure over K, i.e. /du = 1,then f* < E, f(x)
K
and so

fr < inf E, f(x)

Suppose y € K has f(y) = f*, andlet d, be the measure with weight 1 at y
Then f* = f(y) = Es, f(o)
And so

f* = inf,E, f(x)

Something different

Consider the optimization problem

ff* = min f(x) : € K

where f(x) continuous, K C R" compact

fr < flx), VeekK

so if p is a measure over K, i.e. /du = 1,then f* < E, f(x)
K

and so
fr < inf E, f(x)

Suppose y € K has f(y) = f*, andlet d, be the measure with weight 1 at y

Then f* = f(y) = Es, f(x)

And so

f* = inf,E, f(x)

How do we use this fact?

Polynomial optimization

Consider the polynomial optimization problem

fo = min{ fo(z) : fi(x) 20, 1<:<m, z€R"}
where each f;(z) is a polynomial ie. fi(z) = > c54) in @™
e Fach 7 is a tuple my,ms, ..., ™, of nonnegative integers, and =™ = x['x3* ...

e Bach S(2) is a finite set of tuples, and the a; . are reals.

Polynomial optimization

Consider the polynomial optimization problem

fo = min{ fo(z) : fi(x) 20, 1<i<m, xecR"}
where each f;(z) is a polynomial ie. fi(z) = > c54) in @™
e Each = is a tuple 7, ms,..., T, of nonnegative integers, and =™ = ' x3* ... ™"

e Bach S(2) is a finite set of tuples, and the a; . are reals.

Weknow f; = inf,E, fo(x), over all measures pover K = {x € R" : fi(x) >0, 1 <1 < m}.

Polynomial optimization

Consider the polynomial optimization problem

fo = min{ fo(z) : fi(x) 20, 1<:<m, z€R"}
where each f;(z) is a polynomial ie. fi(z) = > c54) in @™
e Each = is a tuple 7, ms,..., T, of nonnegative integers, and =™ = ' x3* ... ™"
e Bach S(2) is a finite set of tuples, and the a; . are reals.
Weknow f; = inf,E, fo(x), over all measures pover K = {x € R" : fi(x) >0, 1 <1 < m}.

ie. fy = inf { ZWES(O) QoY : Yisa K—moment}

Here, y is a K-moment if there is a measure p over K with y, = [E,x™ for each tuple

Polynomial optimization

Consider the polynomial optimization problem

fo = min{ fo(z) : fi(x) 20, 1<:<m, z€R"}
where each f;(z) is a polynomial ie. fi(z) = > c54) in @™
e Each = is a tuple 7, ms,..., T, of nonnegative integers, and =™ = ' x3* ... ™"
e Bach S(2) is a finite set of tuples, and the a; . are reals.
Weknow f; = inf,E, fo(x), over all measures pover K = {x € R" : fi(x) >0, 1 <1 < m}.
ie. fy = inf { ZWES(O) QoY : Yisa K—moment}
Here, y is a K-moment if there is a measure p over K with y, = [E,x™ for each tuple

(Cough! Here, y is an infinite-dimensional vector).

Polynomial optimization

Consider the polynomial optimization problem

fo = min{ fo(z) : fi(x) 20, 1<:<m, z€R"}
where each f;(z) is a polynomial ie. fi(z) = > c54) in @™
e Each = is a tuple 7, ms,..., T, of nonnegative integers, and =™ = ' x3* ... ™"
e Bach S(2) is a finite set of tuples, and the a; . are reals.
Weknow f; = inf,E, fo(x), over all measures pover K = {x € R" : fi(x) >0, 1 <1 < m}.
ie. fy = inf { ZWES(O) QoY : Yisa K—moment}
Here, y is a K-moment if there is a measure p over K with y, = [E,x™ for each tuple

(Cough! Here, y is an infinite-dimensional vector). Can we make an easier statement?

Polynomial optimization
fi = min{fo(@) : fil®) >0, 1<i<m, @cR,
where fi(xz) = Zﬂ'GS(i) Qi T,

Thus f; = inf,E, fo(x), over all measures pover K = {x € R" : fi(x) >0, 1 <1 < m}.

Polynomial optimization

fo = min{ fo(z) : fi(x) 20, 1<i<m, zeR"}

where fi(x) = > cg() Qi T"
So fy = infy) _aoYx, over all K-moment vectors y;
(yis a K-moment if there is a measure p over K with y, = E,x™ for each tuple)

(K= {z €R" : fi(x) >0, 1<i<m})

Polynomial optimization

fo = min{ fo(z) : fi(x) 20, 1<i<m, zeR"}

where fi(x) = > cg() Qi T"

So fy = infy) _aoYx, over all K-moment vectors y;

(yis a K-moment if there is a measure p over K with y, = E,x™ for each tuple)
(K = {z € R" : fi(z) >0, 1<i<m}).

So: Yo — 1.

Polynomial optimization

fo = min{ fo(z) : fi(x) 20, 1<i<m, zeR"}

where fi(x) = > cg() Qi T"

So fy = infy) _aoYx, over all K-moment vectors y;

(yis a K-moment if there is a measure p over K with y, = E,x™ for each tuple)
(K = {z € R" : fi(z) >0, 1<i<m}).

So: yo = 1. Can we say more?

Polynomial optimization

fo = min{ fo(z) : fi(x) 20, 1<i<m, zeR"}

where fi(x) = > cg() Qi T"

So fy = infy) _aoYx, over all K-moment vectors y;

(yis a K-moment if there is a measure p over K with y, = E,x™ for each tuple)
(K = {z € R" : fi(z) >0, 1<i<m}).

So: yo = 1. Can we say more? Define v = (2™) (all monomials).

Polynomial optimization

fo = min{ fo(z) : fi(x) 20, 1<i<m, zeR"}

where fi(x) = > cg() Qi T"

So fy = infy) _aoYx, over all K-moment vectors y;

(yis a K-moment if there is a measure p over K with y, = E,x™ for each tuple)
(K = {z € R" : fi(z) >0, 1<i<m}).

So: yo = 1. Can we say more? Define v = (2™) (all monomials). Also define M[y] = E,vv’.

Polynomial optimization

£ = min{ fo(@) : fil@) >0, 1<i<m, zeR",

where fi(x) = > cg() Qi T"
So fy = infy) _aoYx, over all K-moment vectors y;
(yis a K-moment if there is a measure p over K with y, = E,x™ for each tuple)

(K ={z €R" : fi(z) >0, 1<i<m}).
So: yo = 1. Can we say more? Define v = (2™) (all monomials). Also define M[y] = E,vv’.

So for any tuples m, p, Mylz, = E,z"2’ = E, ™" = y..,

Polynomial optimization

fo = min{ fo(z) : fi(x) 20, 1<i<m, zeR"}

where fi(x) = > cg() Qi T"
So fy = infy) _aoYx, over all K-moment vectors y;

(yis a K-moment if there is a measure p over K with y, = E,x™ for each tuple)

(K ={z €R" : fi(z) >0, 1<i<m}).
So: yo = 1. Can we say more? Define v = (2™) (all monomials). Also define M[y] = E,vv’.

So for any tuples m, p, Myls, = E, 2"z’ = E, ™" = y,.,

So for any (oco-dimensional) vector z, indexed by tuples, i.e. with entries z, for each tuple mr,

Polynomial optimization

fo = min{ fo(z) : fi(x) 20, 1<i<m, zeR"}

where fi(x) = > cg() Qi T"
So fy = infy) _aoYx, over all K-moment vectors y;
(yis a K-moment if there is a measure p over K with y, = E,x™ for each tuple)

(K= {x R : fi(x) >0, 1<i<m})
So: yo = 1. Can we say more? Define v = (2™) (all monomials). Also define M[y] = E,vv’.
So for any tuples m, p, Myls, = E, 2"z’ = E, ™" = y,.,

So for any (oco-dimensional) vector z, indexed by tuples, i.e. with entries z, for each tuple mr,

Z’Mylz = Y., E.zx"zz, = E, (3, zzz™)? > 0

Polynomial optimization

fo = min{ fo(z) : fi(x) 20, 1<i<m, zeR"}

where fi(x) = > cg() Qi T"
So fy = infy) _aoYx, over all K-moment vectors y;
(yis a K-moment if there is a measure p over K with y, = E,x™ for each tuple)

(K= {x R : fi(x) >0, 1<i<m})
So: yo = 1. Can we say more? Define v = (2™) (all monomials). Also define M[y] = E,vv’.
So for any tuples m, p, Myls, = E, 2"z’ = E, ™" = y,.,

So for any (oco-dimensional) vector z, indexed by tuples, i.e. with entries z, for each tuple mr,

Z’Mylz = Y., E.zx"zz, = E, (3, zzz™)? > 0

so M[y] = 0 !l

Polynomial optimization

fi = min{fo(a) : file) >0, 1<i<m, zeR},
where fi(x) = > cg() Qi T"
So fy = infy) _aoYx, over all K-moment vectors y;

(yis a K-moment if there is a measure p over K with y, = E,x™ for each tuple)

(K= {z €R" : fi(x) >0, 1<i<m})

So: yo = 1. Can we say more? Define v = (2™) (all monomials). Also define M[y] = E,vv’.

So for any tuples m, p, Myls, = E, 2"z’ = E, ™" = y,.,
So for any (oco-dimensional) vector z, indexed by tuples, i.e. with entries z, for each tuple mr,

Z’Mylz = Y., E.zx"zz, = E, (3, zzz™)? > 0

so M[y] = 0 !l

SO
fi = min) _ aoxys
s.t. Y = 1,
M = 0,
My, = Yrtp, for all tuples m,p
the zeroth row and column of M both equal y. (redundant)

Polynomial optimization

fi = min{fo(a) : file) >0, 1<i<m, zeR},
where fi(x) = > cg() Qi T"
So fy = infy) _aoYx, over all K-moment vectors y;

(yis a K-moment if there is a measure p over K with y, = E,x™ for each tuple)

(K= {z €R" : fi(x) >0, 1<i<m})

So: yo = 1. Can we say more? Define v = (2™) (all monomials). Also define M[y] = E,vv’.

So for any tuples m, p, Myls, = E, 2"z’ = E, ™" = y,.,
So for any (oco-dimensional) vector z, indexed by tuples, i.e. with entries z, for each tuple mr,

Z’Mylz = Y., E.zx"zz, = E, (3, zzz™)? > 0

so M[y] = 0 !l
SO
fi = min) apqys
s.t. Yo = 1,
M » 0,
My, = Yrip, for all tuples m,p
the zeroth row and column of M both equal .

An infinite-dimensional semidefinite program!!

fo = min{ fo(x) : fi(x) >0, 1<i:<m, x&R"}
where fi(x) = > cg5() Qi T"

fo = min) agrys
™
s.t. Yo = 1,
M > 0,
My, = Yrip, for all tuples m,p
the zeroth row and column of M both equal .

fo = min{ fo(x) : fi(x) >0, 1<i:<m, x&R"}
where fi(x) = > cg5() Qi T"

.f(;l< > min Z a0, Yn
T

s.t. Yo = 1,
M > 0,
My, = Yrip, for all tuples m,p
the zeroth row and column of M both equal .

Restrict: pick an integer d > 1. Restrict the SDP to all tuples 7 with |7| < d.

fo = min{ fo(x) : fi(x) >0, 1<i:<m, x&R"}
where fi(x) = > cg5() Qi T"

fy > min)_ ao-ys
™

s.t. Yo = 1,
M > 0,
My, = Yrip, for all tuples m,p
the zeroth row and column of M both equal .

Restrict: pick an integer d > 1. Restrict the SDP to all tuples 7 with |7| < d.

Example: d = 8. So we will consider the monomial w% :13‘2l x3 because 24+4+1 < 8.

But we will not consider 33313g$8, because 1 +7+1 > 8.

fo = min{ fo(x) : fi(x) >0, 1<i:<m, x&R"}
where fi(x) = > cg5() Qi T"

fo = min) agrys
™
s.t. Yo = 1,
M > 0,
My, = Yrip, for all tuples m,p
the zeroth row and column of M both equal .

Restrict: pick an integer d > 1. Restrict the SDP to all tuples 7 with |7| < d.

f5 = min) aoxys
s

s.t. Yo = 1,
the rows and columns of M, and the entries in y, indexed by tuples of size < d
M = 0,
My, = Yrt+p, for all appropriate tuples 7, p
the zeroth row and column of M both equal y,

fo = min{ fo(x) : fi(x) >0, 1<i:<m, x&R"}
where fi(x) = > cg5() Qi T"

fo = min) agrys
™
s.t. Yo = 1,
M > 0,
My, = Yrip, for all tuples m,p
the zeroth row and column of M both equal .

Restrict: pick an integer d > 1. Restrict the SDP to all tuples 7 with |7| < d.

f5 = min) aoxys
s

s.t. Yo = 1,
the rows and columns of M, and the entries in y, indexed by tuples of size < d
M = 0,
My, = Yrt+p, for all appropriate tuples 7, p
the zeroth row and column of M both equal y

A finite-dimensional semidefinite program!!

fo = min{ fo(x) : fi(x) >0, 1<i:<m, x&R"}
where fi(x) = > cg5() Qi T"

fo = min) agrys
™
s.t. Yo = 1,
M > 0,
My, = Yrip, for all tuples m,p
the zeroth row and column of M both equal .

Restrict: pick an integer d > 1. Restrict the SDP to all tuples 7 with |7| < d.

f5 = min) aoxys
s

s.t. Yo = 1,
the rows and columns of M, and the entries in y, indexed by tuples of size < d
M = 0,
My, = Yrt+p, for all appropriate tuples 7, p
the zeroth row and column of M both equal y

A finite-dimensional semidefinite program!! But could be very large!!

fo = min{ fo(x) : fi(x) >0, 1<i:<m, x&R"}
where fi(x) = > cg5() Qi T"

fy > min)_ ao-ys
™

s.t. Yo = 1,
M > 0,
My, = Yrip, for all tuples m,p
the zeroth row and column of M both equal .

Restrict: pick an integer d > 1. Restrict the SDP to all tuples 7 with |7| < d.

f5 = min) aoxys
s

s.t. Yo = 1,
the rows and columns of M, and the entries in y, indexed by tuples of size < d
M = 0,
My, = Yrt+p, for all appropriate tuples 7, p
the zeroth row and column of M both equal y

A finite-dimensional semidefinite program!! But could be very large!!

e Can be strengthened to account for the constraints f;(x) > 0.

fo = min{ fo(x) : fi(x) >0, 1<i:<m, x&R"}
where fi(x) = > cg5() Qi T"

fo = min) agrys
™
s.t. Yo = 1,
M = 0,

Mz = Yrsp:
the zeroth row and column of M both equal .

Restrict: pick an integer d > 1. Restrict the SDP to all tuples 7 with |7| < d.

f5 = min) aoxys
s

s.t. Yo = 1,
the rows and columns of M, and the entries in y, indexed by tuples of size < d
M = 0,
My, = Yrt+p, for all appropriate tuples 7, p
the zeroth row and column of M both equal y

A finite-dimensional semidefinite program!! But could be very large!!

e Can be strengthened to account for the constraints f;(x) > 0.

e This is the level- d Lasserre relaxation (abridged).

fo = min{ fo(z) : fi(x) 20, 1<i<m, xR},

where fi(z) = > cs3) Qi T

fi > minY a0 v,
s.t. Yo = 1,
M > 0,

Mw,p = Yn+p;
the zeroth row and column of M both equal .

Restrict: pick an integer d > 1. Restrict the SDP to all tuples 7 with |7| < d.

f{)|< > min Z o, Yr
0

s.t. Yo = 1,
the rows and columns of M, and the entries in y, indexed by tuples of size < d
M > 0,
My, = Yri+p, for all appropriate tuples 7, p
the zeroth row and column of M both equal y

A finite-dimensional semidefinite program!! But could be very large!!

e Can be strengthened to account for the constraints f;(x) > 0.
e This is the level- d Lasserre relaxation (abridged).

e Dominates the SOS relaxations. Up to a point.

