
Optimization Fundamentals of OPF Problems

Daniel Bienstock, Columbia University

January 2015

Power flow problem in its simplest form

Power flow problem in its simplest form

Parameters:

• For each line km, its admittance bkm + jgkm = bmk + jgmk

• For each bus k, voltage limits V min
k and V max

k

• For each bus k, active and reactive net power limits

Pmin
k , Pmax

k , Qmin
k , and Qmax

k

Variables:

• For each bus k, complex voltage ek + jfk

Notation: For a bus k, δ(k) = set of lines incident with k

Basic problem

Find a solution to:

Pmin
k ≤

∑
km∈ δ(k)

[
gkm(e2

k + f 2
k)− gkm(ekem + fkfm) + bkm(ekfm − fkem)

]
≤ Pmax

k(1a)

Qmin
k ≤

∑
km∈ δ(k)

[
−bkm(e2

k + f 2
k) + bkm(ekem + fkfm) + gkm(ekfm − fkem)

]
≤ Qmax

k(1b)

(V min
k)2 ≤ e2

k + f 2
k ≤ (V max

k)2, (1c)

for each bus k = 1, 2, . . .

Many possible variations

• Line limits

• Various optimization versions

Quadratically constrained, quadratic programming problems

(QCQPs):

min f0(x)

s.t. fi(x) ≥ 0, 1 ≤ i ≤ m

x ∈ Rn

Here,

fi(x) = xTMix + cTi x + di

is a general quadratic

Each Mi is n× n, wlog symmetric

Quadratically constrained, quadratic programming problems

(QCQPs):

min f0(x)

s.t. fi(x) ≥ 0, 1 ≤ i ≤ m

x ∈ Rn

Here,

fi(x) = xTMix + cTi x + di

is a general quadratic

Each Mi is n× n, wlog symmetric

xTMx = xTMTx, so xTMx = 1
2
(xTMx + xTMTx) = xT

(
M+MT

2

)
x

Quadratically constrained, quadratic programming problems

(QCQPs):

min f0(x)

s.t. fi(x) ≥ 0, 1 ≤ i ≤ m

x ∈ Rn

Here,

fi(x) = xTMix + cTi x + di

is a general quadratic

Each Mi is n× n, wlog symmetric

Special case: Linear Programming

min cTx

s.t. Ax ≥ b,

x ∈ Rn

Quadratically constrained, quadratic programming problems

(QCQPs):

min f0(x)

s.t. fi(x) ≥ 0, 1 ≤ i ≤ m

x ∈ Rn

Here,

fi(x) = xTMix + cTi x + di

is a general quadratic

Each Mi is n× n, wlog symmetric

Special case: Convex Quadratic Programming:

M0 � 0, Mi � 0, 1 ≤ i ≤ m

Folklore result: QCQP is NP-hard

Folklore result: QCQP is NP-hard

Let w1, w2, . . . , wn be integers, and consider:

W ∗ .
= min −

∑
i

x2
i

s.t.
∑
i

wi xi = 0,

−1 ≤ xi ≤ 1, 1 ≤ i ≤ n.

Folklore result: QCQP is NP-hard

Let w1, w2, . . . , wn be integers, and consider:

W ∗ .
= min −

∑
i

x2
i

s.t.
∑
i

wi xi = 0,

−1 ≤ xi ≤ 1, 1 ≤ i ≤ n.

W ∗ = −n, iff there exists a subset J ⊆ {1, . . . , n} with∑
j∈J

wj =
∑
j /∈J

wj

Folklore result: QCQP is NP-hard

Let w1, w2, . . . , wn be integers, and consider:

W ∗ .
= min −

∑
i

x2
i

s.t.
∑
i

wi xi = 0,

−1 ≤ xi ≤ 1, 1 ≤ i ≤ n.

W ∗ = −n, iff there exists a subset J ⊆ {1, . . . , n} with∑
j∈J

wj =
∑
j /∈J

wj

• Lavaei & Low (2011), van Hentenryck & Coffrin (2014): AC-OPF is NP-

hard on trees

Folklore result: QCQP is NP-hard

Let w1, w2, . . . , wn be integers, and consider:

W ∗ .
= min −

∑
i

x2
i

s.t.
∑
i

wi xi = 0,

−1 ≤ xi ≤ 1, 1 ≤ i ≤ n.

W ∗ = −n, iff there exists a subset J ⊆ {1, . . . , n} with∑
j∈J

wj =
∑
j /∈J

wj

Actually, exactly what are “NP-hard” problems?

Folklore result: QCQP is NP-hard

Let w1, w2, . . . , wn be integers, and consider:

W ∗ .
= min −

∑
i

x2
i

s.t.
∑
i

wi xi = 0,

−1 ≤ xi ≤ 1, 1 ≤ i ≤ n.

W ∗ = −n, iff there exists a subset J ⊆ {1, . . . , n} with∑
j∈J

wj =
∑
j /∈J

wj

Actually, exactly what are “NP-hard” problems?

• Really, really hard problems?

Folklore result: QCQP is NP-hard

Let w1, w2, . . . , wn be integers, and consider:

W ∗ .
= min −

∑
i

x2
i

s.t.
∑
i

wi xi = 0,

−1 ≤ xi ≤ 1, 1 ≤ i ≤ n.

W ∗ = −n, iff there exists a subset J ⊆ {1, . . . , n} with∑
j∈J

wj =
∑
j /∈J

wj

Actually, exactly what are “NP-hard” problems?

• Really, really hard problems?

• But it is really, really hard to say exactly how they are hard?

Digression: NP-hardness

“Turing Machine” model (bit model) of computing

Programs = algorithms use 1-dimensional memory (“tape”) where 0s and

1s are stored

0 01 1 1 1 00

"HEAD"

• In one step, head reads/writes and/or moves one unit

Digression: NP-hardness

“Turing Machine” model (bit model) of computing

Programs = algorithms use 1-dimensional memory (“tape”) where 0s and

1s are stored

0 01 1 1 1 00

"HEAD"

• In one step, head reads/writes and/or moves one unit

• Yes/no problems (like integer partition)

Digression: NP-hardness

“Turing Machine” model (bit model) of computing

Programs = algorithms use 1-dimensional memory (“tape”) where 0s and

1s are stored

0 01 1 1 1 00

"HEAD"

• In one step, head reads/writes and/or moves one unit

• Yes/no problems (like integer partition)

• A problem is in the class NP if for any “YES” instance there exists a

verification in time polynomial in the number of bits needed to describe

the instance

Digression: NP-hardness

“Turing Machine” model (bit model) of computing

Programs = algorithms use 1-dimensional memory (“tape”) where 0s and

1s are stored

0 01 1 1 1 00

"HEAD"

• In one step, head reads/writes and/or moves one unit

• Yes/no problems (like integer partition)

• A problem is in the class NP if for any “YES” instance there exists a

verification in time polynomial in the number of bits needed to describe

the instance

Example: given integers w1, w2, . . . , wn, does there exist a subset J with∑
j∈J

wj =
∑
j /∈J

wj

Note: We are simply verifying a certificate that somebody gave us

Digression: NP-hardness

“Turing Machine” model (bit model) of computing

Programs = algorithms use 1-dimensional memory (“tape”) where 0s and

1s are stored

0 01 1 1 1 00

"HEAD"

• In one step, head reads/writes and/or moves one unit

• Yes/no problems (like integer partition)

• A problem is in the class NP if for any “YES” instance there exists a

verification in time polynomial in the number of bits needed to describe

the instance

Example: given integers w1, w2, . . . , wn, does there exist a subset J with∑
j∈J

wj =
∑
j /∈J

wj

Note: We are simply verifying a certificate that somebody gave us

Proxy concept: problems in NP are “well-defined”

Digression: NP-hardness

“Turing Machine” model (bit model) of computing

Programs = algorithms use 1-dimensional memory (“tape”) where 0s and

1s are stored

0 01 1 1 1 00

"HEAD"

• In one step, head reads/writes and/or moves one unit

• Yes/no problems (like integer partition)

• A problem is in the class NP if for any “YES” instance there exists a

verification in time polynomial in the number of bits needed to describe

the instance

Example: given integers w1, w2, . . . , wn, does there exist a subset J with∑
j∈J

wj =
∑
j /∈J

wj

Note: We are simply verifying a certificate that somebody gave us

Proxy concept: problems in NP are “well-defined”

• A problem class P is NP-complete if any problem in the class NP

can be reduced to a problem P in polynomial time

Digression: NP-hardness

“Turing Machine” model (bit model) of computing

Programs = algorithms use 1-dimensional memory (“tape”) where 0s and

1s are stored

0 01 1 1 1 00

"HEAD"

• In one step, head reads/writes and/or moves one unit

• Yes/no problems (like integer partition)

• A problem is in the class NP if for any “YES” instance there exists a

verification in time polynomial in the number of bits needed to describe

the instance

Example: given integers w1, w2, . . . , wn, does there exist a subset J with∑
j∈J

wj =
∑
j /∈J

wj

Note: We are simply verifying a certificate that somebody gave us

Proxy concept: problems in NP are “well-defined”

• A problem class P is NP-complete if any problem in the class NP

can be reduced to a problem P in polynomial time

• As a consequence, if somebody smart figured a way to solve P in poly-

nomial time, we can then solve every problem in NP in polynomial

time

Digression: NP-hardness

“Turing Machine” model (bit model) of computing

Programs = algorithms use 1-dimensional memory (“tape”) where 0s and

1s are stored

0 01 1 1 1 00

"HEAD"

• In one step, head reads/writes and/or moves one unit

• Yes/no problems (like integer partition)

• A problem is in the class NP if for any “YES” instance there exists a

verification in time polynomial in the number of bits needed to describe

the instance

Example: given integers w1, w2, . . . , wn, does there exist a subset J with∑
j∈J

wj =
∑
j /∈J

wj

Note: We are simply verifying a certificate that somebody gave us

Proxy concept: problems in NP are “well-defined”

• A problem class P is NP-complete if any problem in the class NP

can be reduced to a problem P in polynomial time

• As a consequence, if somebody smart figured a way to solve P in poly-

nomial time, we can then solve every problem in NP in polynomial

time

• Examples: traveling salesman problem, 3-SAT, graph coloring, the prob-

lem above

But ... not all NP-hard problems are equally hard

Again: given integers w1, w2, . . . , wn, does there exist a subset J with∑
j∈J

wj =
∑
j /∈J

wj =
1

2

n∑
j=1

wj

It is hard (NP-hard) to answer YES, or NO, exactly

But ... not all NP-hard problems are equally hard

Again: given integers w1, w2, . . . , wn, does there exist a subset J with∑
j∈J

wj =
∑
j /∈J

wj =
1

2

n∑
j=1

wj

It is hard (NP-hard) to answer YES, or NO, exactly

It is not hard to answer YES or NO, approximately:

But ... not all NP-hard problems are equally hard

Again: given integers w1, w2, . . . , wn, does there exist a subset J with∑
j∈J

wj =
∑
j /∈J

wj =
1

2

n∑
j=1

wj

It is hard (NP-hard) to answer YES, or NO, exactly

It is not hard to answer YES or NO, approximately:

Fix 0 < ε < 1. Then we can compute a set J

• Such that

1− ε
2

n∑
j=1

wj ≤
∑
j∈J

wj ≤ 1 + ε

2

n∑
j=1

wj

• In time polynomial in n and ε−1

(So approximate feasibility, in “practicable” time)

Problem is weakly NP-hard

Folklore result: QCQP is NP-hard

Let w1, w2, . . . , wn be integers, and consider:

W ∗ .
= min −

∑
i

x2
i

s.t.
∑
i

wi xi = 0,

−1 ≤ xi ≤ 1, 1 ≤ i ≤ n.

W ∗ = −n, iff there exists a subset J ⊆ {1, . . . , n} with∑
j∈J

wj =
∑
j /∈J

wj

• Lavaei & Low (2011), van Hentenryck & Coffrin (2014): AC-OPF is NP-

hard on trees

Take any {−1, 1}-linear program

Take any {−1, 1}-linear program

min cTx

s.t. Ax = b

x ∈ {−1, 1}n.

Take any {−1, 1}-linear program

min cTx

s.t. Ax = b

x ∈ {−1, 1}n.

→

min cTx − M
∑
j

x2
j

s.t. Ax = b

−1 ≤ xj ≤ 1, 1 ≤ j ≤ n.

(and many other similar transformations)

Take any {−1, 1}-linear program

min cTx

s.t. Ax = b

x ∈ {−1, 1}n.

→

min cTx − M
∑
j

x2
j

s.t. Ax = b

−1 ≤ xj ≤ 1, 1 ≤ j ≤ n.

(and many other similar transformations)

→ linearly constrained QCQP is as hard as any integer programming

problem

Example: TSP, graph coloring, set covering, etc.

NO nice approximation algorithms exist for these

They are called strongly NP-hard

Take any {−1, 1}-linear program

min cTx

s.t. Ax = b

x ∈ {−1, 1}n.

→

min cTx − M
∑
j

x2
j

s.t. Ax = b

−1 ≤ xj ≤ 1, 1 ≤ j ≤ n.

(and many other similar transformations)

→ linearly constrained QCQP is as hard as any integer programming

problem

Example: TSP, graph coloring, set covering, etc.

NO nice approximation algorithms exist for these

They are called strongly NP-hard

A. Verma (2009): AC-OPF is strongly NP-hard.

Even more general than QCQP:

Solving systems of polynomial equations.

Problem: given polynomials pi : Rn → R, for 1 ≤ i ≤ m
find x ∈ Rn s.t. pi(x) = 0, ∀ i

Even more general than QCQP:

Solving systems of polynomial equations.

Problem: given polynomials pi : Rn → R, for 1 ≤ i ≤ m
find x ∈ Rn s.t. pi(x) = 0, ∀ i

Observation. Can be reduced to QCQP.

Example: find a root for 3v6w − v4 + 7 = 0.

Even more general than QCQP:

Solving systems of polynomial equations.

Problem: given polynomials pi : Rn → R, for 1 ≤ i ≤ m
find x ∈ Rn s.t. pi(x) = 0, ∀ i

Observation. Can be reduced to QCQP.

Example: find a root for 3v6w − v4 + 7 = 0.

Equivalent to the system on variables v, v2, v4, v6, w, y and c:

c2 = 1

v2 − cv2 = 0

v2
2 − cv4 = 0

v2v4 − cv6 = 0

v6w − cy = 0

3cy − cv4 = −7

This is a polynomial-time reduction

Smale’s 17th problem

Can a zero of n polynomial equations on n unknowns be found
approximately,
on the average in polynomial time?

(abridged)

Smale’s 17th problem

Can a zero of n polynomial equations on n unknowns be found
approximately,
on the average in polynomial time?

(abridged)

What is meant by approximately?

And what do we mean by on the average?

“Approximately”

Q: How do practitioners (e.g. power engineers) solve systems of nonlinear
equations?

“Approximately”

Q: How do practitioners (e.g. power engineers) solve systems of nonlinear
equations?

A: Newton-Raphson, of course!

12

→ If we start near a solution, quadratic convergence

“Approximately”

Q: How do practitioners (e.g. power engineers) solve systems of nonlinear
equations?

A: Newton-Raphson, of course!

12

→ If we start near a solution, quadratic convergence

To solve F (x) = 0, where F : Rn → Rn:

Iterate: xk+1 = −
[
J(xk)

]−1
F (xk) + xk, k = 1, . . .

J(xk)ij = ∂Ji
∂xj

(xk) 1 ≤ i, j ≤ n

Smale’s 17th problem

Can a zero of n polynomial equations on n unknowns be found
approximately,
on the average in polynomial time?

(abridged)

What is meant by approximate convergence?

Smale’s 17th problem

Can a zero of n polynomial equations on n unknowns be found
approximately,
on the average in polynomial time?

(abridged)

What is meant by approximate convergence?

Answer: convergence to the region of quadratic convergence for Newton-Raphson

Smale’s 17th problem

Can a zero of n polynomial equations on n unknowns be found
approximately,
on the average in polynomial time?

(abridged)

What is meant by approximate convergence?

Answer: convergence to the region of quadratic convergence for Newton-Raphson

What is meant by on the average?

Smale’s 17th problem

Can a zero of n polynomial equations on n unknowns be found
approximately,
on the average in polynomial time?

(abridged)

What is meant by approximate convergence?

Answer: convergence to the region of quadratic convergence for Newton-Raphson

What is meant by on the average?

“On the average” in polynomial time

A QCQP could be quite difficult!

e.g., a unique feasible solution, which additionally is an irrational vector

Example in R2:

x2
1 + x2

2 ≥ 1

x2
1 + x2

2 ≤ 1

x1 − x2 = 0

x2
1 + (x2 − 1)2 ≤ 1

“On the average” in polynomial time

A QCQP could be quite difficult!

e.g., a unique feasible solution, which additionally is an irrational vector

Example in R2:

x2
1 + x2

2 ≥ 1

x2
1 + x2

2 ≤ 1

x1 − x2 = 0

x2
1 + (x2 − 1)2 ≤ 1

1

2

1

2

,

“On the average” in polynomial time

A QCQP could be quite difficult!
e.g., a unique feasible solution, which additionally is an irrational vector

but a “nearby” problem instance could be much easier

“On the average” in polynomial time

A QCQP could be quite difficult!
e.g., a unique feasible solution, which additionally is an irrational vector

but a “nearby” problem instance could be much easier

• View a problem as a vector in an appropriate space

“On the average” in polynomial time

A QCQP could be quite difficult!
e.g., a unique feasible solution, which additionally is an irrational vector

but a “nearby” problem instance could be much easier

• View a problem as a vector in an appropriate space

• Endow that space with an appropriate metric
(Bombieri-Weyl Hermitian product)

“On the average” in polynomial time

A QCQP could be quite difficult!
e.g., a unique feasible solution, which additionally is an irrational vector

but a “nearby” problem instance could be much easier

• View a problem as a vector in an appropriate space

• Endow that space with an appropriate metric
(Bombieri-Weyl Hermitian product)

• In that space, uniformly sample a ball (of appropriate radius) around a given problem

“On the average” in polynomial time

A QCQP could be quite difficult!
e.g., a unique feasible solution, which additionally is an irrational vector

but a “nearby” problem instance could be much easier

• View a problem as a vector in an appropriate space

• Endow that space with an appropriate metric
(Bombieri-Weyl Hermitian product)

• In that space, consider the set of problems given by a ball (of appropriate radius) around a given
problem

• We want the algorithm to is fast, on average, in that ball

“On the average” in polynomial time

A QCQP could be quite difficult!
e.g., a unique feasible solution, which additionally is an irrational vector

but a “nearby” problem instance could be much easier

• View a problem as a vector in an appropriate space

• Endow that space with an appropriate metric
(Bombieri-Weyl Hermitian product)

• In that space, consider the set of problems given by a ball (of appropriate radius) around a given
problem

• We want the algorithm to is fast, on average, in that ball

→ A Las Vegas algorithm:

“On the average” in polynomial time

A QCQP could be quite difficult!
e.g., a unique feasible solution, which additionally is an irrational vector

but a “nearby” problem instance could be much easier

• View a problem as a vector in an appropriate space

• Endow that space with an appropriate metric
(Bombieri-Weyl Hermitian product)

• In that space, consider the set of problems given by a ball (of appropriate radius) around a given
problem

• We want the algorithm to is fast, on average, in that ball

→ A Las Vegas algorithm: it may fail to converge, but with probability zero

Smale’s 17th problem

Can a zero of n polynomial equations on n unknowns be found
approximately,
on the average in polynomial time,
with a uniform algorithm?

(abridged; but we are cheating)

• Beltrán and Pardo (2009) – a randomized (Las Vegas) uniform algorithm
that computes an approximate zero in expected polynomial time

• Bürgisser, Cucker (2012) – a deterministic O(nlog log n) (uniform) algo-
rithm for computing approximate zeros

• Techniques: Homotopy (path-following method solving a sequence of
problems), Newton’s method

Smale’s 17th problem

Can a zero of n polynomial equations on n unknowns be found
approximately,
on the average in polynomial time?

(abridged; and we are cheating)

• Beltrán and Pardo (2009) – a randomized (Las Vegas) uniform algorithm
that computes an approximate zero in expected polynomial time

• Bürgisser, Cucker (2012) – a deterministic O(nlog log n) (uniform) algo-
rithm for computing approximate zeros

• Techniques: Homotopy (path-following method solving a sequence of
problems), Newton’s method

But we are cheating: All of this is over Cn, not Rn

Smale’s 17th problem

Can a zero of n polynomial equations on n unknowns be found
approximately,
on the average in polynomial time?

(abridged; and we are cheating)

• Beltrán and Pardo (2009) – a randomized (Las Vegas) uniform algorithm
that computes an approximate zero in expected polynomial time

• Bürgisser, Cucker (2012) – a deterministic O(nlog log n) (uniform) algo-
rithm for computing approximate zeros

• Techniques: Homotopy (path-following method solving a sequence of
problems), Newton’s method

But we are cheating: All of this is over Cn, not Rn

So what can be done over the reals?

Smale’s 17th problem

Can a zero of n polynomial equations on n unknowns be found
approximately,
on the average in polynomial time?

(abridged; and we are cheating)

• Beltrán and Pardo (2009) – a randomized (Las Vegas) uniform algorithm
that computes an approximate zero in expected polynomial time

• Bürgisser, Cucker (2012) – a deterministic O(nlog log n) (uniform) algo-
rithm for computing approximate zeros

• Techniques: Homotopy (path-following method solving a sequence of
problems), Newton’s method

But we are cheating: All of this is over Cn, not Rn

So what can be done over the reals? Let’s start with “simple” results.

Simplest example: S-Lemma (abridged)

Let f, g : Rn → R be quadratic functions (degree ≤ 2 polynomials).

Suppose there exists x̄ ∈ Rn such that g(x̄) > 0. Then

f(x) ≥ 0 whenever g(x) ≥ 0

if and only

there exists γ ≥ 0 such that f(x) ≥ γg(x) for all x ∈ Rn.

Yakubovich (1971), also much earlier, related work

γ acts as a Lagrange multiplier.

Quick aside:

Suppose we want to solve: F ∗
.
= min{ f(x) : g(x) ≥ 0 }; here f, g quadratics

Quick aside:

Suppose we want to solve: min{ f(x) : g(x) ≥ 0 }; here f, g quadratics

Algorithm. (Binary search)

1. Guess a real θ.

2. Check if f(x)− θ ≥ 0, ∀ x s.t. g(x) ≥ 0.

3. If “yes”, we know F ∗ ≥ θ; if not, F ∗ < θ.

4. Either way we can update θ, and repeat. Works under compactness of {x : g(x) ≥ 0 }.

Simplest example: S-Lemma (abridged)

Let f, g : Rn → R be quadratic functions (degree ≤ 2 polynomials).

Suppose there exists x̄ ∈ Rn such that g(x̄) > 0. Then

f(x) ≥ 0 whenever g(x) ≥ 0

if and only

there exists γ ≥ 0 such that f(x) ≥ γg(x) for all x ∈ Rn.

Yakubovich (1971), also much earlier, related work

γ acts as a Lagrange multiplier.

Corollary: Can solve
min{f(x) : g(x) ≥ 0}

in polynomial time (using semidefinite programming)

Simplest example: S-Lemma (abridged)

Let f, g : Rn → R be quadratic functions (degree ≤ 2 polynomials).

Suppose there exists x̄ ∈ Rn such that g(x̄) > 0. Then

f(x) ≥ 0 whenever g(x) ≥ 0

if and only

there exists γ ≥ 0 such that f(x) ≥ γg(x) for all x ∈ Rn.

Yakubovich (1971), also much earlier, related work

γ acts as a Lagrange multiplier.

Corollary: Can solve
min{f(x) : g(x) ≥ 0}

in polynomial time (using semidefinite programming)

→ Time for some math

Want to solve: min{f(x) : g(x) ≥ 0}

Given a real θ, is it the the case that f(x) − θ ≥ 0 whenever g(x) ≥ 0 ?

Given a real θ, is it the the case that f(x) − θ ≥ 0 whenever g(x) ≥ 0 ?

S-Lemma: iff there exists real γ ≥ 0 s.t. f(x) − θ − γ g(x) ≥ 0 ∀ x ∈ Rn

Given a real θ, is it the the case that f(x) − θ ≥ 0 whenever g(x) ≥ 0 ?

S-Lemma: iff there exists real γ ≥ 0 s.t. f(x) − θ − γ g(x) ≥ 0 ∀ x ∈ Rn

Notation: f(x) = xTAx+ 2aTx+ a0, g(x) = xTBx+ 2bTx+ b0,

Given a real θ, is it the the case that f(x) − θ ≥ 0 whenever g(x) ≥ 0 ?

S-Lemma: iff there exists real γ ≥ 0 s.t. f(x) − θ − γ g(x) ≥ 0 ∀ x ∈ Rn

Notation: f(x) = xTAx+ 2aTx+ a0, g(x) = xTBx+ 2bTx+ b0,

So S-Lemma statement is:

(xT , 1)

 A− γB a− γb

(a− γb)T a0 − γb0 − θ

(x

1

)
≥ 0 ∀ x ∈ Rn

Given a real θ, is it the the case that f(x) − θ ≥ 0 whenever g(x) ≥ 0 ?

S-Lemma: iff there exists real γ ≥ 0 s.t. f(x) − θ − γ g(x) ≥ 0 ∀ x ∈ Rn

Notation: f(x) = xTAx+ 2aTx+ a0, g(x) = xTBx+ 2bTx+ b0,

So S-Lemma statement is:

(xT , 1)

 A− γB a− γb

(a− γb)T a0 − γb0 − θ

(x

1

)
≥ 0 ∀ x ∈ Rn

Can be proved that this is equivalent to saying: A− γB a− γb

(a− γb)T a0 − γb0 − θ

 � 0

Given a real θ, is it the the case that f(x) − θ ≥ 0 whenever g(x) ≥ 0 ?

S-Lemma: iff there exists real γ ≥ 0 s.t. f(x) − θ − γ g(x) ≥ 0 ∀ x ∈ Rn

Notation: f(x) = xTAx+ 2aTx+ a0, g(x) = xTBx+ 2bTx+ b0,

So S-Lemma statement is:

(xT , 1)

 A− γB a− γb

(a− γb)T a0 − γb0 − θ

(x

1

)
≥ 0 ∀ x ∈ Rn

Can be proved that this is equivalent to saying: A− γB a− γb

(a− γb)T a0 − γb0 − θ

 � 0

So in short, min{f(x) : g(x) ≥ 0} is equivalent to

max θ

subject to  A− γB a− γb

(a− γb)T a0 − γb0 − θ

 � 0

γ ≥ 0

which is an SDP (semidefinite program) on variables γ, θ.

Many applications for the S-Lemma

• Control Theory

• Dynamical Systems

• Robust error estimation

• Robust optimization

• . . .

An application: the trust-region subproblem

min{f(x) : g(x) ≤ 0}

can be solved in polynomial time, where f, g quadratics, g convex

Scale, rotate, translate:

min{f(x) : ‖x‖ ≤ 1}

Digression: application of trust-region subproblem in engineering

→ Unconstrained optimization min{f(x) : x ∈ Rn}

• f(x) can be antyhing

• constraints mapped into f(x) by using penalties

Digression: application of trust-region subproblem in engineering

→ Unconstrained optimization min{f(x) : x ∈ Rn}

• f(x) can be antyhing

• constraints mapped into f(x) by using penalties

Example: min{ g(x1, x2) : 0 ≤ x1 ≤ 1}

Digression: application of trust-region subproblem in engineering

→ Unconstrained optimization min{f(x) : x ∈ Rn}

• f(x) can be antyhing

• constraints mapped into f(x) by using penalties

Example: min{ g(x1, x2) : 1/2 ≤ x1 andx2 ≤ 1}

becomes:

min g(x1, x2) + α log(x1 − 1/2) + α log(1− x2)

subject to: x1, x2 unconstrained

α > 0 a “barrier” parameter

x
1

x
2

1/2

1

Digression: application of trust-region subproblem in engineering

→ Unconstrained optimization min{f(x) : x ∈ Rn}

Digression: application of trust-region subproblem in engineering

→ Unconstrained optimization min{f(x) : x ∈ Rn}

Algorithm

• Given an iterate wt, sample f(x) in a neighborhood ‖x− xt‖ ≤ ∆.

w t

= sample

∆

• Get pairs (y1, f(y1)), (y2, f(y2)), . . . , (ym, f(ym))

• Using these samples, construct a quadratic “model” of f(x)
(model = spline, least squares estimate, etc).

Digression: application of trust-region subproblem in engineering

→ Unconstrained optimization min{f(x) : x ∈ Rn}

Algorithm

• Given an iterate wt, sample f(x) in a neighborhood ‖x− xt‖ ≤ ∆.

w t

= sample

∆

• Get pairs (y1, f(y1)), (y2, f(y2)), . . . , (ym, f(ym))

• Using these samples, construct a quadratic “model” of f(x)
(model = spline, least squares estimate, etc).

• Call this model: Q(x)

• Solve: min{Q(x) : ‖x− wt‖ ≤ ∆}. This is the trust-region subproblem.

• The solution becomes wt+1.
Or: conduct a line-search from wt to the solution so as to compute wt+1.

Digression: application of trust-region subproblem in engineering

→ Unconstrained optimization min{f(x) : x ∈ Rn}

Algorithm

• Given an iterate wt, sample f(x) in a neighborhood ‖x− xt‖ ≤ ∆.

w t

= sample

∆

• Get pairs (y1, f(y1)), (y2, f(y2)), . . . , (ym, f(ym))

• Using these samples, construct a quadratic “model” of f(x)
(model = spline, least squares estimate, etc).

• Call this model: Q(x)

• Solve: min{Q(x) : ‖x− wt‖ ≤ ∆}. This is the trust-region subproblem.

• The solution becomes wt+1.
Or: conduct a line-search from wt to the solution so as to compute wt+1.

• General purpose codes: KNITRO, LOQO have been used on OPF.

An application: the trust-region subproblem

min{f(x) : g(x) ≤ 0}

can be solved in polynomial time, where f, g quadratics, g convex

Scale, rotate, translate:

min{f(x) : ‖x‖ ≤ 1}

can be solved in poly time → log ε−1

Y. Ye (1992) → log log ε−1

How about extensions of the trust-region subproblem?

Sturm-Zhang (2003)

Where f (x) is a quadratic,

min f (x)

s.t. ‖x‖ ≤ 1

aTx ≤ b (one linear side constraint)

can be solved in polynomial time, as can

min f (x)

s.t. ‖x‖ ≤ 1

‖x− x0‖ ≤ r0 (one additional convex ball constraint)

Ye-Zhang (2003)

min f (x)

s.t. ‖x‖ ≤ 1

aTi x ≤ bi i = 1, 2

(aT1 x− b1)(aT2 x− b2) = 0

(two linear side constraints, but at least one binding)

Anstreicher-Burer (2012)

In polynomial time, one can solve a problem of the form

min xTQx+ cTx

s.t. ‖x‖ ≤ 1

aTi x ≤ bi i = 1, 2

provided the two linear constraints are parallel:

two linear constraints

ball constraint

Anstreicher-Burer (2012)

In polynomial time, one can solve a problem of the form

min xTQx+ cTx

s.t. ‖x‖ ≤ 1

aTi x ≤ bi i = 1, 2

provided the two linear constraints are parallel:

two linear constraints

ball constraint

→min {xTQx+ cTx : l ≤ x1 ≤ u, ‖x‖ ≤ 1 }

Anstreicher-Burer (2012)

In polynomial time, one can solve a problem of the form

min xTQx+ cTx

s.t. ‖x‖ ≤ 1

aTi x ≤ bi i = 1, 2

provided the two linear constraints are parallel:

two linear constraints

ball constraint

→min {xTQx+ cTx : l ≤ x1 ≤ u, ‖x‖ ≤ 1 } (∗)

restate as: min
∑
i,j

qijXij + cTx

s.t. X11 + lu ≤ (l + u)x1

‖X.1 − lx‖ ≤ x1 − l
‖ux−X.1‖ ≤ u− x1∑
j

Xjj ≤ 1

X � xxT

Equivalent to problem (*) ? Yes, if X = xxT , i.e. a rank-1 solution

Anstreicher-Burer (2012)

In polynomial time, one can solve a problem of the form

min xTQx+ cTx

s.t. ‖x‖ ≤ 1

aTi x ≤ bi i = 1, 2

provided the two linear constraints are parallel:

two linear constraints

ball constraint

→min {xTQx+ cTx : l ≤ x1 ≤ u, ‖x‖ ≤ 1 } (∗)

restate as: min
∑
i,j

qijXij + cTx →
∑

i,j qijxixj + cTx

s.t. X11 + lu ≤ (l + u)x1

‖X.1 − lx‖ ≤ x1 − l
‖ux−X.1‖ ≤ u− x1∑
j

Xjj ≤ 1 →
∑

j x
2
jj ≤ 1

X � xxT

Equivalent to problem (*) ? Yes, if X = xxT , i.e. a rank-1 solution

Anstreicher-Burer (2012)

In polynomial time, one can solve a problem of the form

min xTQx+ cTx

s.t. ‖x‖ ≤ 1

aTi x ≤ bi i = 1, 2

provided the two linear constraints are parallel:

two linear constraints

ball constraint

→min {xTQx+ cTx : l ≤ x1 ≤ u, ‖x‖ ≤ 1 } (∗)

restate as: min
∑
i,j

qijXij + cTx

s.t. X11 + lu ≤ (l + u)x1

‖X.1 − lx‖ ≤ x1 − l
‖ux−X.1‖ ≤ u− x1∑
j

Xjj ≤ 1

X � xxT

Lemma: This problem has an optimal solution with X = xxT , i.e. a rank-1 solution.

Burer-Yang (2012)

In polynomial time, one can solve a problem of the form

min xTQx+ cTx

s.t. ‖x‖ ≤ 1

aTi x ≤ bi 1 ≤ i ≤ m

if no two linear inequalities are simultaneously binding in the feasible region

Burer-Yang (2012)

In polynomial time, one can solve a problem of the form

min xTQx+ cTx

s.t. ‖x‖ ≤ 1

aTi x ≤ bi 1 ≤ i ≤ m

if no two linear inequalities are simultaneously binding in the feasible region

Lemma: the following problem has an optimal solution with X = xxT .

min
∑
i,j

qijXij + cTx

s.t. X11 + lu ≤ (l + u)x1

‖bix−Xai‖ ≤ bi − aTi x i ≤ m

bibj − bjaTi x− biaTj x+ aTi Xaj ≤ 0 i < j ≤ m∑
j

Xjj ≤ 1 , X � xxT

Generalizations?

(B. and Alex Michalka, SODA 2014)

min xTQx+ cTx

s.t. ‖x− µh‖ ≤ rh, h ∈ S,

‖x− µh‖ ≥ rh, h ∈ K,

x ∈ P .
= {x ∈ Rn : Ax ≤ b }

Theorem.
For each fixed |S|, |K| can be solved in polynomial time if either

(1) |S| ≥ 1 and polynomially large number of faces of P intersect⋂
h∈S

{x ∈ Rn : ‖x− µh‖ ≤ rh},

or

(2) |S| = 0 and the number of rows of A is bounded.

Generalizations?

(B. and Alex Michalka, SODA 2014)

min xTQx+ cTx

s.t. ‖x− µh‖ ≤ rh, h ∈ S,

‖x− µh‖ ≥ rh, h ∈ K,

x ∈ P .
= {x ∈ Rn : Ax ≤ b }

Theorem.
For each fixed |S|, |K| can be solved in polynomial time if either

(1) |S| ≥ 1 and polynomially large number of faces of P intersect⋂
h∈S

{x ∈ Rn : ‖x− µh‖ ≤ rh},

or

(2) |S| = 0 and the number of rows of A is bounded.

• Does not use semidefinite programming

• Note: the curvature in all quadratics is the same

Why not general QCQP?

Why not general QCQP?

(QCQP): min xTQx + 2cTx

s.t. xTAix + 2bTi x + ri ≥ 0 i = 1, . . . ,m

x ∈ Rn.

Why not general QCQP?

(QCQP): min xTQx + 2cTx

s.t. xTAix + 2bTi x + ri ≥ 0 i = 1, . . . ,m

x ∈ Rn.

→ form the semidefinite relaxation

(SR): min

(
0 cT

c Q

)
•X

s.t.

(
ri bTi
bi Ai

)
•X ≥ 0 i = 1, . . . ,m

X � 0, X11 = 1.

Here, for symmetric matrices M , N ,

M •N =
∑
h,k

MhkNhk

Why not general QCQP?

(QCQP): min xTQx + 2cTx

s.t. xTAix + 2bTi x + ri ≥ 0 i = 1, . . . ,m

x ∈ Rn.

→ form the semidefinite relaxation

(SR): min

(
0 cT

c Q

)
•X

s.t.

(
ri bTi
bi Ai

)
•X ≥ 0 i = 1, . . . ,m

X � 0, X11 = 1.

Here, for symmetric matrices M , N ,

M •N =
∑
h,k

MhkNhk

Why do we call it a relaxation?

Why not general QCQP?

(QCQP): min xTQx + 2cTx

s.t. xTAix + 2bTi x + ri ≥ 0 i = 1, . . . ,m

x ∈ Rn.

→ form the semidefinite relaxation

(SR): min

(
0 cT

c Q

)
•X

s.t.

(
ri bTi
bi Ai

)
•X ≥ 0 i = 1, . . . ,m

X � 0, X11 = 1.

Here, for symmetric matrices M , N ,

M •N =
∑
h,k

MhkNhk

Why do we call it a relaxation?

Given x feasible for QCQP, the matrix (1, xT)

(
1
x

)
feasible for SR and with the same value

Why not general QCQP?

(QCQP): min xTQx + 2cTx

s.t. xTAix + 2bTi x + ri ≥ 0 i = 1, . . . ,m

x ∈ Rn.

→ form the semidefinite relaxation

(SR): min

(
0 cT

c Q

)
•X

s.t.

(
ri bTi
bi Ai

)
•X ≥ 0 i = 1, . . . ,m

X � 0, X11 = 1.

Here, for symmetric matrices M , N ,

M •N =
∑
h,k

MhkNhk

Why do we call it a relaxation?

Given x feasible for QCQP, the matrix (1, xT)

(
1
x

)
feasible for SR and with the same value

So the value of problem SR is a lower bound for QCQP

Why not general QCQP?

(QCQP): min xTQx + 2cTx

s.t. xTAix + 2bTi x + ri ≥ 0 i = 1, . . . ,m

x ∈ Rn.

→ form the semidefinite relaxation

(SR): min

(
0 cT

c Q

)
•X

s.t.

(
ri bTi
bi Ai

)
•X ≥ 0 i = 1, . . . ,m

X � 0, X11 = 1.

Here, for symmetric matrices M , N ,

M •N =
∑
h,k

MhkNhk

Why do we call it a relaxation?

Given x feasible for QCQP, the matrix (1, xT)

(
1
x

)
feasible for SR and with the same value

So the value of problem SR is a lower bound for QCQP

So if SR has a rank-1 solution, the lower bound is exact.

Why not general QCQP?

(QCQP): min xTQx + 2cTx

s.t. xTAix + 2bTi x + ri ≥ 0 i = 1, . . . ,m

x ∈ Rn.

→ form the semidefinite relaxation

(SR): min

(
0 cT

c Q

)
•X

s.t.

(
ri bTi
bi Ai

)
•X ≥ 0 i = 1, . . . ,m

X � 0, X11 = 1.

Here, for symmetric matrices M , N ,

M •N =
∑
h,k

MhkNhk

Why do we call it a relaxation?

Given x feasible for QCQP, the matrix (1, xT)

(
1
x

)
feasible for SR and with the same value

So the value of problem SR is a lower bound for QCQP

So if SR has a rank-1 solution, the lower bound is exact.

Unfortunately, SR typically does not have a rank-1 solution.

Theorem (Pataki, 1998):

An SDP

(SR): min M •X
s.t. N i •X ≥ bi i = 1, . . . ,m

X � 0, X an n× n matrix,

always has a solution of rank O(m1/2), and this result is best possible.

Generalizations?

(B. and Alex Michalka, SODA 2014)

min xTQx+ cTx

s.t. ‖x− µh‖ ≤ rh, h ∈ S,

‖x− µh‖ ≥ rh, h ∈ K,

x ∈ P .
= {x ∈ Rn : Ax ≤ b }

Theorem.
For each fixed |S|, |K| can be solved in polynomial time if either

(1) |S| ≥ 1 and polynomially large number of faces of P intersect⋂
h∈S

{x ∈ Rn : ‖x− µh‖ ≤ rh},

or

(2) |S| = 0 and the number of rows of A is bounded.

• Does not use semidefinite programming

• Note: the curvature in all quadratics is the same

The trust-region subproblem:.

min xTQx+ cTx

s.t. ‖x− µ‖ ≤ r

The trust-region subproblem:.

min xTQx+ cTx

s.t. ‖x− µ‖ ≤ r

Generalization: CDT (Celis-Dennis-Tapia) problem

min xTQ0x+ cT0 x

s.t. xTQ1x+ cT1 x+ d1 ≤ 0

xTQ2x+ cT2 x+ d2 ≤ 0

where Q1 � 0, Q2 � 0

Even more general than QCQPs

Barvinok (STOC 1992):

For each fixed p ≥ 1, there is a polynomial-time algorithm for deciding feasibility of a system

xTMi x = 0, 1 ≤ i ≤ p,

‖x‖ = 1, x ∈ Rn

where the Mi are general matrices.

Even more general than QCQPs

Barvinok (STOC 1992):

For each fixed p ≥ 1, there is a polynomial-time algorithm for deciding feasibility of a system

xTMi x = 0, 1 ≤ i ≤ p,

‖x‖ = 1, x ∈ Rn

where the Mi are general matrices.

• Non-constructive. Algorithm says “yes” or “no.”

• Computational model?

Stated as: computation over the reals using infinite precision

Even more general than QCQPs

Barvinok (STOC 1992):

For each fixed p ≥ 1, there is a polynomial-time algorithm for deciding feasibility of a system

xTMi x = 0, 1 ≤ i ≤ p,

‖x‖ = 1, x ∈ Rn

where the Mi are general matrices.

• Non-constructive. Algorithm says “yes” or “no.”

• Computational model?

Stated as: computation over the reals using infinite precision

• There is a separate community in mathematics dealing with these problems

• Methodology does not use semidefinite programming

• Instead, uses algebraic geometry

• Explicit emphasis in handling “cases”

A (better?) alternative: ε-feasibility

For each fixed p ≥ 1, given a system

xTMi x = 0, 1 ≤ i ≤ p,

‖x‖ = 1, x ∈ Rn

and given 0 < ε < 1, either

• Prove that the system is infeasible, or

• Output x̂ ∈ Rn with

−ε ≤ xTMi ≤ ε, 1 ≤ i ≤ p,

1− ε ≤ ‖x̂‖ ≤ 1 + ε,

in time polynomial in the data and in log ε−1.

A (better?) alternative: ε-feasibility

For each fixed p ≥ 1, given a system

xTMi x = 0, 1 ≤ i ≤ p,

‖x‖ = 1, x ∈ Rn

and given 0 < ε < 1, either

• Prove that the system is infeasible, or

• Output x̂ ∈ Rn with

−ε ≤ xTMi ≤ ε, 1 ≤ i ≤ p,

1− ε ≤ ‖x̂‖ ≤ 1 + ε,

in time polynomial in the data and in log ε−1.

Two issues: Constructiveness, and ε-feasibility

Modification to Barvinok’s result

Assume that for each fixed p ≥ 1, there is an algorithm that given a system

xTMi x = 0, 1 ≤ i ≤ p,

‖x‖ = 1, x ∈ Rn

and given 0 < ε < 1, either

• Proves that the system is infeasible, or

• Proves that is ε-feasible,

in time polynomial in the data and in log ε−1.

(so still nonconstructive)

Modification to Barvinok’s result

Assume that for each fixed p ≥ 1, there is an algorithm that given a system

xTMi x = 0, 1 ≤ i ≤ p,

‖x‖ = 1, x ∈ Rn

and given 0 < ε < 1, either

• Proves that the system is infeasible, or

• Proves that is ε-feasible,

in time polynomial in the data and in log ε−1.

(so still nonconstructive)

Assuming such an algorithm exists ...

Theorem.

For each fixed m ≥ 1 there is a polynomial-time algorithm that, given an optimization problem

min f0(x)
.
= xTQ0x+ cT0x

s.t. xTQix+ cTi x+ di ≤ 0 1 ≤ i ≤ m,

where Q1 � 0, and 0 < ε < 1, either

(1) proves that the problem is infeasible,

or

(2) computes an ε-feasible vector x̂ such that there exists no feasible x ∈ Rn with f0(x) < f(x̂)− ε.

The complexity of the algorithm is polynomial in the number of bits in the data and in log ε−1

Theorem.

For each fixed m ≥ 1 there is a polynomial-time algorithm that, given an optimization problem

min f0(x)
.
= xTQ0x+ cT0x

s.t. xTQix+ cTi x+ di ≤ 0 1 ≤ i ≤ m,

where Q1 � 0, and 0 < ε < 1, either

(1) proves that the problem is infeasible,

or

(2) computes an ε-feasible vector x̂ such that there exists no feasible x ∈ Rn with f0(x) < f(x̂)− ε.

The complexity of the algorithm is polynomial in the number of bits in the data and in log ε−1

→ Related algebraic geometry work by Grigoriev, Pasechnik, other Russians

Back to S-Lemma, +

Let f, g : Rn → R be quadratic functions (degree ≤ 2 polynomials).

Suppose there exists x̄ ∈ Rn such that g(x̄) > 0. Then

f(x) ≥ 0 whenever g(x) ≥ 0 iff exists γ ≥ 0 s.t. f(x) ≥ γg(x) for all x ∈ Rn.

Back to S-Lemma, +

Let f, g : Rn → R be quadratic functions (degree ≤ 2 polynomials).

Suppose there exists x̄ ∈ Rn such that g(x̄) > 0. Then

f(x) ≥ 0 whenever g(x) ≥ 0 iff exists γ ≥ 0 s.t. f(x) ≥ γg(x) for all x ∈ Rn.

i.e., iff exists γ ≥ 0 s.t. (f − γg)(x) ≥ 0 for all x ∈ Rn.

Back to S-Lemma, +

Let f, g : Rn → R be quadratic functions (degree ≤ 2 polynomials).

Suppose there exists x̄ ∈ Rn such that g(x̄) > 0. Then

f(x) ≥ 0 whenever g(x) ≥ 0 iff exists γ ≥ 0 s.t. f(x) ≥ γg(x) for all x ∈ Rn.

i.e., iff exists γ ≥ 0 s.t. (f − γg)(x) ≥ 0 for all x ∈ Rn.

in other words, Hilbert (1888): iff exists γ ≥ 0, S0(x) s.t. f(x) = S0(x) + γg(x)

where S0(x) is a sum of squares of polynomials

Back to S-Lemma, +

Let f, g : Rn → R be quadratic functions (degree ≤ 2 polynomials).

Suppose there exists x̄ ∈ Rn such that g(x̄) > 0. Then

f(x) ≥ 0 whenever g(x) ≥ 0 iff exists γ ≥ 0 s.t. f(x) ≥ γg(x) for all x ∈ Rn.

i.e., iff exists γ ≥ 0 s.t. (f − γg)(x) ≥ 0 for all x ∈ Rn.

in other words, Hilbert (1888): iff exists γ ≥ 0, S0(x) s.t. f(x) = S0(x) + γg(x)

where S0(x) is a sum of squares of polynomials ! This paper started the field of algebraic
geometry

Back to S-Lemma, +

Let f, g : Rn → R be quadratic functions (degree ≤ 2 polynomials).

Suppose there exists x̄ ∈ Rn such that g(x̄) > 0. Then

f(x) ≥ 0 whenever g(x) ≥ 0 iff exists γ ≥ 0 s.t. f(x) ≥ γg(x) for all x ∈ Rn.

i.e., iff exists γ ≥ 0 s.t. (f − γg)(x) ≥ 0 for all x ∈ Rn.

in other words, Hilbert (1888): iff exists γ ≥ 0, S0(x) s.t. f(x) = S0(x) + γg(x)

where S0(x) is a sum of squares of polynomials ! This paper started the field of algebraic geometry

And how about generalizations of the S-Lemma?

Given quadratics Q0(x), Q1(x), . . . , Qm(x) with m ≥ 2, is it true that

Q0(x) ≥ 0 whenever Qi(x) ≥ 0, 1 ≤ i ≤ m,

iff exist γi ≥ 0 s.t. Q0(x) ≥
∑m

i=1 γiQi(x) for all x ∈ Rn?

Back to S-Lemma, +

Let f, g : Rn → R be quadratic functions (degree ≤ 2 polynomials).

Suppose there exists x̄ ∈ Rn such that g(x̄) > 0. Then

f(x) ≥ 0 whenever g(x) ≥ 0 iff exists γ ≥ 0 s.t. f(x) ≥ γg(x) for all x ∈ Rn.

i.e., iff exists γ ≥ 0 s.t. (f − γg)(x) ≥ 0 for all x ∈ Rn.

in other words, Hilbert (1888): iff exists γ ≥ 0, S0(x) s.t. f(x) = S0(x) + γg(x)

where S0(x) is a sum of squares of polynomials ! This paper started the field of algebraic geometry

And how about generalizations of the S-Lemma?

Given quadratics Q0(x), Q1(x), . . . , Qm(x) with m ≥ 2, is it true that

Q0(x) ≥ 0 whenever Qi(x) ≥ 0, 1 ≤ i ≤ m,

iff exist γi ≥ 0, S0(x), s.t. Q0(x) = S0(x) +
∑m

i=1 γiQi(x), S0(x) = a sum of squares?

Back to S-Lemma, +

Let f, g : Rn → R be quadratic functions (degree ≤ 2 polynomials).

Suppose there exists x̄ ∈ Rn such that g(x̄) > 0. Then

f(x) ≥ 0 whenever g(x) ≥ 0 iff exists γ ≥ 0 s.t. f(x) ≥ γg(x) for all x ∈ Rn.

i.e., iff exists γ ≥ 0 s.t. (f − γg)(x) ≥ 0 for all x ∈ Rn.

in other words, Hilbert (1888): iff exists γ ≥ 0, S0(x) s.t. f(x) = S0(x) + γg(x)

where S0(x) is a sum of squares of polynomials ! This paper started the field of algebraic geometry

And how about generalizations of the S-Lemma?

Given quadratics Q0(x), Q1(x), . . . , Qm(x) with m ≥ 2, is it true that

Q0(x) ≥ 0 whenever Qi(x) ≥ 0, 1 ≤ i ≤ m,

iff exist γi ≥ 0, S0(x), s.t. Q0(x) = S0(x) +
∑m

i=1 γiQi(x), S0(x) = a sum of squares?

No.

Back to S-Lemma, +

Let f, g : Rn → R be quadratic functions (degree ≤ 2 polynomials).

Suppose there exists x̄ ∈ Rn such that g(x̄) > 0. Then

f(x) ≥ 0 whenever g(x) ≥ 0 iff exists γ ≥ 0 s.t. f(x) ≥ γg(x) for all x ∈ Rn.

i.e., iff exists γ ≥ 0 s.t. (f − γg)(x) ≥ 0 for all x ∈ Rn.

in other words, Hilbert (1888): iff exists γ ≥ 0, S0(x) s.t. f(x) = S0(x) + γg(x)

where S0(x) is a sum of squares of polynomials ! This paper started the field of algebraic geometry

And how about generalizations of the S-Lemma?

Given quadratics Q0(x), Q1(x), . . . , Qm(x) with m ≥ 2, is it true that

Q0(x) ≥ 0 whenever Qi(x) ≥ 0, 1 ≤ i ≤ m,

iff exist γi ≥ 0, S0(x), s.t. Q0(x) = S0(x) +
∑m

i=1 γiQi(x), S0(x) = a sum of squares?

No.

However*: Q0(x) > 0 whenever Qi(x) ≥ 0, 1 ≤ i ≤ m,

iff exist S0(x), S1(x), . . . Sm(x) s.t. Q0(x) = S0(x) +
∑m

i=1 Si(x)Qi(x)

where each Si(x) is a sum of squares of polynomials. Putinar (1993).

Back to S-Lemma, +

Let f, g : Rn → R be quadratic functions (degree ≤ 2 polynomials).

Suppose there exists x̄ ∈ Rn such that g(x̄) > 0. Then

f(x) ≥ 0 whenever g(x) ≥ 0 iff exists γ ≥ 0 s.t. f(x) ≥ γg(x) for all x ∈ Rn.

i.e., iff exists γ ≥ 0 s.t. (f − γg)(x) ≥ 0 for all x ∈ Rn.

in other words, Hilbert (1888): iff exists γ ≥ 0, S0(x) s.t. f(x) = S0(x) + γg(x)

where S0(x) is a sum of squares of polynomials ! This paper started the field of algebraic geometry

And how about generalizations of the S-Lemma?

Given quadratics Q0(x), Q1(x), . . . , Qm(x) with m ≥ 2, is it true that

Q0(x) ≥ 0 whenever Qi(x) ≥ 0, 1 ≤ i ≤ m,

iff exist γi ≥ 0, S0(x), s.t. Q0(x) = S0(x) +
∑m

i=1 γiQi(x), S0(x) = a sum of squares?

No.

However*: Q0(x) > 0 whenever Qi(x) ≥ 0, 1 ≤ i ≤ m,

iff exist S0(x), S1(x), . . . Sm(x) s.t. Q0(x) = S0(x) +
∑m

i=1 Si(x)Qi(x)

where each Si(x) is a sum of squares of polynomials. Putinar (1993).
* = {x ∈ Rn : Qi(x) ≥ 0, 1 ≤ i ≤ m} is bounded (and represented as such)

More complete statement of Putinar’s theorem – still abridged

• Given polynomials P0(x), G1(x), . . . , Gm(x), x ∈ Rn,

• One of the Gi(x) being ‖x‖2 ≤ R2

More complete statement of Putinar’s theorem – still abridged

• Given polynomials P0(x), G1(x), . . . , Gm(x), x ∈ Rn,

• One of the Gi(x) being ‖x‖2 ≤ R2

• Then: P0(x) > 0 in {x : Gi(x) ≥ 0, 1 ≤ i ≤ m} implies:

P0(x) = S0(x) +
∑m

i=1 Si(x)Gi(x)

where each Si(x) is a sum of squares of polynomials

More complete statement of Putinar’s theorem – still abridged

• Given polynomials P0(x), G1(x), . . . , Gm(x), x ∈ Rn,

• One of the Gi(x) being ‖x‖2 ≤ R2

• Then: P0(x) > 0 in {x : Gi(x) ≥ 0, 1 ≤ i ≤ m} implies:

P0(x) = S0(x) +
∑m

i=1 Si(x)Gi(x)

where each Si(x) is a sum of squares of polynomials

Questions

• What are the Si(x)? Can we compute them efficiently?

More complete statement of Putinar’s theorem – still abridged

• Given polynomials P0(x), G1(x), . . . , Gm(x), x ∈ Rn,

• One of the Gi(x) being ‖x‖2 ≤ R2

• Then: P0(x) > 0 in {x : Gi(x) ≥ 0, 1 ≤ i ≤ m} implies:

P0(x) = S0(x) +
∑m

i=1 Si(x)Gi(x)

where each Si(x) is a sum of squares of polynomials

Questions

• What are the Si(x)? Can we compute them efficiently?

• Can we at least estimate them? Can we say anything about their degree?

More complete statement of Putinar’s theorem – still abridged

• Given polynomials P0(x), G1(x), . . . , Gm(x), x ∈ Rn,

• One of the Gi(x) being ‖x‖2 ≤ R2

• Then: P0(x) > 0 in {x : Gi(x) ≥ 0, 1 ≤ i ≤ m} implies:

P0(x) = S0(x) +
∑m

i=1 Si(x)Gi(x)

where each Si(x) is a sum of squares of polynomials

Questions

• What are the Si(x)? Can we compute them efficiently?

• Can we at least estimate them? Can we say anything about their degree?

Nie and Schweighofer (2005): upper bound on the max degree, as a function of the P0, G1, . . . , Gm.

More complete statement of Putinar’s theorem – still abridged

• Given polynomials P0(x), G1(x), . . . , Gm(x), x ∈ Rn,

• One of the Gi(x) being ‖x‖2 ≤ R2

• Then: P0(x) > 0 in {x : Gi(x) ≥ 0, 1 ≤ i ≤ m} implies:

P0(x) = S0(x) +
∑m

i=1 Si(x)Gi(x)

where each Si(x) is a sum of squares of polynomials

Questions

• What are the Si(x)? Can we compute them efficiently?

• Can we at least estimate them? Can we say anything about their degree?

Nie and Schweighofer (2005): upper bound on the max degree, as a function of the P0, G1, . . . , Gm.

• How can Putinar’s result help us solve

min P0(x)

s.t. Gi(x) ≥ 0, 1 ≤ i ≤ m?

P ∗
.
= min P0(x)

s.t. Gi(x) ≥ 0, 1 ≤ i ≤ m?

P ∗
.
= min P0(x)

s.t. Gi(x) ≥ 0, 1 ≤ i ≤ m?

Idea: constrain the degrees of the sum-of-square “certificate” polynomials Si(x)

P ∗
.
= min P0(x)

s.t. Gi(x) ≥ 0, 1 ≤ i ≤ m?

Idea: constrain the degrees of the sum-of-square “certificate” polynomials Si(x)

Pick an integer t > 0, and define

P (t) .
= sup ρ

s.t. P0(x) − ρ = S0(x) +
∑m

i=1 Si(x)Gi(x)

each Si(x) SOS

deg(S0(x)) ≤ 2t, deg(Si(x)gi(x)) ≤ 2t.

P ∗
.
= min P0(x)

s.t. Gi(x) ≥ 0, 1 ≤ i ≤ m?

Idea: constrain the degrees of the sum-of-square “certificate” polynomials Si(x)

Pick an integer t > 0, and define

P (t) .
= sup ρ

s.t. P0(x) − ρ = S0(x) +
∑m

i=1 Si(x)Gi(x)

each Si(x) SOS

deg(S0(x)) ≤ 2t, deg(Si(x)gi(x)) ≤ 2t.

• P (t) ≤ P ∗

• P (t) → P ∗ as t→ +∞ (finite convergence)

• Does this help?

P (t) .
= sup ρ

s.t. P0(x) − ρ = S0(x) +
∑m

i=1 Si(x)Gi(x)

each Si(x) SOS

deg(S0(x)) ≤ 2t, deg(Si(x)gi(x)) ≤ 2t.

P (t) .
= sup ρ

s.t. P0(x) − ρ = S0(x) +
∑m

i=1 Si(x) Gi(x)

Here, blue polynomials are known, black polynomials are unknown

Example:

(αx2
1 + βx1x2 + γx1) (x1 + 2x2 + 1)

= αx3
1 + (2α+ β)x2

1x2 +

2βx1x
2
2 + (α+ γ)x2

1 + (β + 2γ)x1x2 + γx1

P (t) .
= sup ρ

s.t. P0(x) − ρ = S0(x) +
∑m

i=1 Si(x) Gi(x)

(2)

each Si(x) SOS

deg(S0(x)) ≤ 2t, deg(Si(x)gi(x)) ≤ 2t.

FACT: P (t) can be computed as a semidefinite program of dimension O(nt)

FACT: Checking whether a given polynomial F (x) is SOS can be stated as an SDP

P (t) .
= sup ρ

s.t. P0(x) − ρ = S0(x) +
∑m

i=1 Si(x)Gi(x)

each Si(x) SOS

deg(S0(x)) ≤ 2t, deg(Si(x)gi(x)) ≤ 2t.

FACT: P (t) can be computed as a semidefinite program of dimension O(nt)

FACT: Checking whether a given polynomial F (x) is SOS can be stated as an SDP

Example: (
x2

1 + 2x1 + x2
)2

=
(
x2

1 + 2x1 + x2
) (
x2

1 + 2x1 + x2
)

(
x2

1 + 2x1 + x2
)

=
(
x2

1 + 0x2
2 + 0x1x2 + 2x1 + x2 + 0

)
=

(x2
1, x

2
2, x1x2, x1, x2, 1)



1
0
0
2
1
0



(
x2

1 + 2x1 + x2
)

= (x2
1, x

2
2, x1x2, x1, x2, 1)



1
0
0
2
1
0



(
x2

1 + 2x1 + x2
)

= (x2
1, x

2
2, x1x2, x1, x2, 1)



1
0
0
2
1
0



So
(
x2

1 + 2x1 + x2
)2

= (x2
1, x

2
2, x1x2, x1, x2, 1)



1
0
0
2
1
0

 (1, 0, 0, 2, 1, 0)



x2
1
x2

2
x1x2

x1

x2

1

 =

(
x2

1 + 2x1 + x2
)

= (x2
1, x

2
2, x1x2, x1, x2, 1)



1
0
0
2
1
0



So
(
x2

1 + 2x1 + x2
)2

= (x2
1, x

2
2, x1x2, x1, x2, 1)



1
0
0
2
1
0

 (1, 0, 0, 2, 1, 0)



x2
1
x2

2
x1x2

x1

x2

1

 =

(x2
1, x

2
2, x1x2, x1, x2, 1)



1 0 0 2 1 0
0 0 0 0 0 0
0 0 0 0 0 0
2 0 0 4 2 0
1 0 0 2 1 0
0 0 0 0 0 0





x2
1
x2

2
x1x2

x1

x2

1



(
x2

1 + 2x1 + x2
)

= (x2
1, x

2
2, x1x2, x1, x2, 1)



1
0
0
2
1
0



So
(
x2

1 + 2x1 + x2
)2

= (x2
1, x

2
2, x1x2, x1, x2, 1)



1
0
0
2
1
0

 (1, 0, 0, 2, 1, 0)



x2
1
x2

2
x1x2

x1

x2

1

 =

(x2
1, x

2
2, x1x2, x1, x2, 1)



1 0 0 2 1 0
0 0 0 0 0 0
0 0 0 0 0 0
2 0 0 4 2 0
1 0 0 2 1 0
0 0 0 0 0 0





x2
1
x2

2
x1x2

x1

x2

1



So: if a given polynomial F (x1, x2) is a sum of squares of quadratic polynomials in x1, x2, then:

(
x2

1 + 2x1 + x2
)

= (x2
1, x

2
2, x1x2, x1, x2, 1)



1
0
0
2
1
0



So
(
x2

1 + 2x1 + x2
)2

= (x2
1, x

2
2, x1x2, x1, x2, 1)



1
0
0
2
1
0

 (1, 0, 0, 2, 1, 0)



x2
1
x2

2
x1x2

x1

x2

1

 =

(x2
1, x

2
2, x1x2, x1, x2, 1)



1 0 0 2 1 0
0 0 0 0 0 0
0 0 0 0 0 0
2 0 0 4 2 0
1 0 0 2 1 0
0 0 0 0 0 0





x2
1
x2

2
x1x2

x1

x2

1



So: if a given polynomial F (x1, x2) is a sum of squares of quadratic polynomials in x1, x2, then:

F (x1, x2) = (x2
1, x

2
2, x1x2, x1, x2, 1), times a PSD matrix, times



x2
1
x2

2
x1x2

x1

x2

1



Something different

Consider the optimization problem

f∗
.
= min f(x) : x ∈ K

where f(x) continuous, K ⊆ Rn compact

Something different

Consider the optimization problem

f∗
.
= min f(x) : x ∈ K

where f(x) continuous, K ⊆ Rn compact

f∗ ≤ f(x), ∀ x ∈ K

Something different

Consider the optimization problem

f∗
.
= min f(x) : x ∈ K

where f(x) continuous, K ⊆ Rn compact

f∗ ≤ f(x), ∀ x ∈ K

so if µ is a measure over K, i.e.

∫
K

dµ = 1,

Something different

Consider the optimization problem

f∗
.
= min f(x) : x ∈ K

where f(x) continuous, K ⊆ Rn compact

f∗ ≤ f(x), ∀ x ∈ K

so if µ is a measure over K, i.e.

∫
K

dµ = 1, then f∗ ≤ Eµ f(x)

Something different

Consider the optimization problem

f∗
.
= min f(x) : x ∈ K

where f(x) continuous, K ⊆ Rn compact

f∗ ≤ f(x), ∀ x ∈ K

so if µ is a measure over K, i.e.

∫
K

dµ = 1, then f∗ ≤ Eµ f(x)

and so
f∗ ≤ infµ Eµ f(x)

Something different

Consider the optimization problem

f∗
.
= min f(x) : x ∈ K

where f(x) continuous, K ⊆ Rn compact

f∗ ≤ f(x), ∀ x ∈ K

so if µ is a measure over K, i.e.

∫
K

dµ = 1, then f∗ ≤ Eµ f(x)

and so
f∗ ≤ infµ Eµ f(x)

Suppose y ∈ K has f(y) = f∗,

Something different

Consider the optimization problem

f∗
.
= min f(x) : x ∈ K

where f(x) continuous, K ⊆ Rn compact

f∗ ≤ f(x), ∀ x ∈ K

so if µ is a measure over K, i.e.

∫
K

dµ = 1, then f∗ ≤ Eµ f(x)

and so
f∗ ≤ infµ Eµ f(x)

Suppose y ∈ K has f(y) = f∗, and let δy be the measure with weight 1 at y

Something different

Consider the optimization problem

f∗
.
= min f(x) : x ∈ K

where f(x) continuous, K ⊆ Rn compact

f∗ ≤ f(x), ∀ x ∈ K

so if µ is a measure over K, i.e.

∫
K

dµ = 1, then f∗ ≤ Eµ f(x)

and so
f∗ ≤ infµ Eµ f(x)

Suppose y ∈ K has f(y) = f∗, and let δy be the measure with weight 1 at y

Then f∗ = f(y) = Eδy
f(x)

Something different

Consider the optimization problem

f∗
.
= min f(x) : x ∈ K

where f(x) continuous, K ⊆ Rn compact

f∗ ≤ f(x), ∀ x ∈ K

so if µ is a measure over K, i.e.

∫
K

dµ = 1, then f∗ ≤ Eµ f(x)

and so
f∗ ≤ infµ Eµ f(x)

Suppose y ∈ K has f(y) = f∗, and let δy be the measure with weight 1 at y

Then f∗ = f(y) = Eδy
f(x)

And so

f∗ = infµ Eµ f(x)

Something different

Consider the optimization problem

f∗
.
= min f(x) : x ∈ K

where f(x) continuous, K ⊆ Rn compact

f∗ ≤ f(x), ∀ x ∈ K

so if µ is a measure over K, i.e.

∫
K

dµ = 1, then f∗ ≤ Eµ f(x)

and so
f∗ ≤ infµ Eµ f(x)

Suppose y ∈ K has f(y) = f∗, and let δy be the measure with weight 1 at y

Then f∗ = f(y) = Eδy
f(x)

And so

f∗ = infµ Eµ f(x)

How do we use this fact?

Polynomial optimization

Consider the polynomial optimization problem

f∗0
.
= min { f0(x) : fi(x) ≥ 0, 1 ≤ i ≤ m, x ∈ Rn},

where each fi(x) is a polynomial i.e. fi(x) =
∑

π∈S(i) ai,π x
π.

• Each π is a tuple π1, π2, . . . , πn of nonnegative integers, and xπ
.
= xπ1

1 xπ2
2 . . . xπn

n

• Each S(i) is a finite set of tuples, and the ai,π are reals.

Polynomial optimization

Consider the polynomial optimization problem

f∗0
.
= min { f0(x) : fi(x) ≥ 0, 1 ≤ i ≤ m, x ∈ Rn},

where each fi(x) is a polynomial i.e. fi(x) =
∑

π∈S(i) ai,π x
π.

• Each π is a tuple π1, π2, . . . , πn of nonnegative integers, and xπ
.
= xπ1

1 xπ2
2 . . . xπn

n

• Each S(i) is a finite set of tuples, and the ai,π are reals.

We know f∗0 = infµ Eµ f0(x), over all measures µ over K
.
= {x ∈ Rn : fi(x) ≥ 0, 1 ≤ i ≤ m}.

Polynomial optimization

Consider the polynomial optimization problem

f∗0
.
= min { f0(x) : fi(x) ≥ 0, 1 ≤ i ≤ m, x ∈ Rn},

where each fi(x) is a polynomial i.e. fi(x) =
∑

π∈S(i) ai,π x
π.

• Each π is a tuple π1, π2, . . . , πn of nonnegative integers, and xπ
.
= xπ1

1 xπ2
2 . . . xπn

n

• Each S(i) is a finite set of tuples, and the ai,π are reals.

We know f∗0 = infµ Eµ f0(x), over all measures µ over K
.
= {x ∈ Rn : fi(x) ≥ 0, 1 ≤ i ≤ m}.

i.e. f∗0 = inf
{∑

π∈S(0) a0,πyπ : y is a K-moment
}

Here, y is a K-moment if there is a measure µ over K with yπ = Eµxπ for each tuple π

Polynomial optimization

Consider the polynomial optimization problem

f∗0
.
= min { f0(x) : fi(x) ≥ 0, 1 ≤ i ≤ m, x ∈ Rn},

where each fi(x) is a polynomial i.e. fi(x) =
∑

π∈S(i) ai,π x
π.

• Each π is a tuple π1, π2, . . . , πn of nonnegative integers, and xπ
.
= xπ1

1 xπ2
2 . . . xπn

n

• Each S(i) is a finite set of tuples, and the ai,π are reals.

We know f∗0 = infµ Eµ f0(x), over all measures µ over K
.
= {x ∈ Rn : fi(x) ≥ 0, 1 ≤ i ≤ m}.

i.e. f∗0 = inf
{∑

π∈S(0) a0,πyπ : y is a K-moment
}

Here, y is a K-moment if there is a measure µ over K with yπ = Eµxπ for each tuple π

(Cough! Here, y is an infinite-dimensional vector).

Polynomial optimization

Consider the polynomial optimization problem

f∗0
.
= min { f0(x) : fi(x) ≥ 0, 1 ≤ i ≤ m, x ∈ Rn},

where each fi(x) is a polynomial i.e. fi(x) =
∑

π∈S(i) ai,π x
π.

• Each π is a tuple π1, π2, . . . , πn of nonnegative integers, and xπ
.
= xπ1

1 xπ2
2 . . . xπn

n

• Each S(i) is a finite set of tuples, and the ai,π are reals.

We know f∗0 = infµ Eµ f0(x), over all measures µ over K
.
= {x ∈ Rn : fi(x) ≥ 0, 1 ≤ i ≤ m}.

i.e. f∗0 = inf
{∑

π∈S(0) a0,πyπ : y is a K-moment
}

Here, y is a K-moment if there is a measure µ over K with yπ = Eµxπ for each tuple π

(Cough! Here, y is an infinite-dimensional vector). Can we make an easier statement?

Polynomial optimization

f∗0
.
= min { f0(x) : fi(x) ≥ 0, 1 ≤ i ≤ m, x ∈ Rn},

where fi(x) =
∑

π∈S(i) ai,π x
π,

Thus f∗0 = infµ Eµ f0(x), over all measures µ over K
.
= {x ∈ Rn : fi(x) ≥ 0, 1 ≤ i ≤ m}.

Polynomial optimization

f∗0
.
= min { f0(x) : fi(x) ≥ 0, 1 ≤ i ≤ m, x ∈ Rn},

where fi(x) =
∑

π∈S(i) ai,π x
π.

So f∗0 = infy
∑

π a0,πyπ, over all K-moment vectors y;

(y is a K-moment if there is a measure µ over K with yπ = Eµxπ for each tuple π)

(K
.
= {x ∈ Rn : fi(x) ≥ 0, 1 ≤ i ≤ m}).

Polynomial optimization

f∗0
.
= min { f0(x) : fi(x) ≥ 0, 1 ≤ i ≤ m, x ∈ Rn},

where fi(x) =
∑

π∈S(i) ai,π x
π.

So f∗0 = infy
∑

π a0,πyπ, over all K-moment vectors y;

(y is a K-moment if there is a measure µ over K with yπ = Eµxπ for each tuple π)

(K
.
= {x ∈ Rn : fi(x) ≥ 0, 1 ≤ i ≤ m}).

So: y0 = 1.

Polynomial optimization

f∗0
.
= min { f0(x) : fi(x) ≥ 0, 1 ≤ i ≤ m, x ∈ Rn},

where fi(x) =
∑

π∈S(i) ai,π x
π.

So f∗0 = infy
∑

π a0,πyπ, over all K-moment vectors y;

(y is a K-moment if there is a measure µ over K with yπ = Eµxπ for each tuple π)

(K
.
= {x ∈ Rn : fi(x) ≥ 0, 1 ≤ i ≤ m}).

So: y0 = 1. Can we say more?

Polynomial optimization

f∗0
.
= min { f0(x) : fi(x) ≥ 0, 1 ≤ i ≤ m, x ∈ Rn},

where fi(x) =
∑

π∈S(i) ai,π x
π.

So f∗0 = infy
∑

π a0,πyπ, over all K-moment vectors y;

(y is a K-moment if there is a measure µ over K with yπ = Eµxπ for each tuple π)

(K
.
= {x ∈ Rn : fi(x) ≥ 0, 1 ≤ i ≤ m}).

So: y0 = 1. Can we say more? Define v = (xπ) (all monomials).

Polynomial optimization

f∗0
.
= min { f0(x) : fi(x) ≥ 0, 1 ≤ i ≤ m, x ∈ Rn},

where fi(x) =
∑

π∈S(i) ai,π x
π.

So f∗0 = infy
∑

π a0,πyπ, over all K-moment vectors y;

(y is a K-moment if there is a measure µ over K with yπ = Eµxπ for each tuple π)

(K
.
= {x ∈ Rn : fi(x) ≥ 0, 1 ≤ i ≤ m}).

So: y0 = 1. Can we say more? Define v = (xπ) (all monomials). Also define M [y]
.
= Eµvv

T .

Polynomial optimization

f∗0
.
= min { f0(x) : fi(x) ≥ 0, 1 ≤ i ≤ m, x ∈ Rn},

where fi(x) =
∑

π∈S(i) ai,π x
π.

So f∗0 = infy
∑

π a0,πyπ, over all K-moment vectors y;

(y is a K-moment if there is a measure µ over K with yπ = Eµxπ for each tuple π)

(K
.
= {x ∈ Rn : fi(x) ≥ 0, 1 ≤ i ≤ m}).

So: y0 = 1. Can we say more? Define v = (xπ) (all monomials). Also define M [y]
.
= Eµvv

T .

So for any tuples π, ρ, M [y]π,ρ = Eν xπxρ = Eνx
π+ρ = yπ+ρ

Polynomial optimization

f∗0
.
= min { f0(x) : fi(x) ≥ 0, 1 ≤ i ≤ m, x ∈ Rn},

where fi(x) =
∑

π∈S(i) ai,π x
π.

So f∗0 = infy
∑

π a0,πyπ, over all K-moment vectors y;

(y is a K-moment if there is a measure µ over K with yπ = Eµxπ for each tuple π)

(K
.
= {x ∈ Rn : fi(x) ≥ 0, 1 ≤ i ≤ m}).

So: y0 = 1. Can we say more? Define v = (xπ) (all monomials). Also define M [y]
.
= Eµvv

T .

So for any tuples π, ρ, M [y]π,ρ = Eν xπxρ = Eνx
π+ρ = yπ+ρ

So for any (∞-dimensional) vector z, indexed by tuples, i.e. with entries zπ for each tuple π,

Polynomial optimization

f∗0
.
= min { f0(x) : fi(x) ≥ 0, 1 ≤ i ≤ m, x ∈ Rn},

where fi(x) =
∑

π∈S(i) ai,π x
π.

So f∗0 = infy
∑

π a0,πyπ, over all K-moment vectors y;

(y is a K-moment if there is a measure µ over K with yπ = Eµxπ for each tuple π)

(K
.
= {x ∈ Rn : fi(x) ≥ 0, 1 ≤ i ≤ m}).

So: y0 = 1. Can we say more? Define v = (xπ) (all monomials). Also define M [y]
.
= Eµvv

T .

So for any tuples π, ρ, M [y]π,ρ = Eν xπxρ = Eνx
π+ρ = yπ+ρ

So for any (∞-dimensional) vector z, indexed by tuples, i.e. with entries zπ for each tuple π,

zTM [y]z =
∑

π,ρ Eµ zπxπxρzρ = Eµ (
∑

π zπx
π)2 ≥ 0

Polynomial optimization

f∗0
.
= min { f0(x) : fi(x) ≥ 0, 1 ≤ i ≤ m, x ∈ Rn},

where fi(x) =
∑

π∈S(i) ai,π x
π.

So f∗0 = infy
∑

π a0,πyπ, over all K-moment vectors y;

(y is a K-moment if there is a measure µ over K with yπ = Eµxπ for each tuple π)

(K
.
= {x ∈ Rn : fi(x) ≥ 0, 1 ≤ i ≤ m}).

So: y0 = 1. Can we say more? Define v = (xπ) (all monomials). Also define M [y]
.
= Eµvv

T .

So for any tuples π, ρ, M [y]π,ρ = Eν xπxρ = Eνx
π+ρ = yπ+ρ

So for any (∞-dimensional) vector z, indexed by tuples, i.e. with entries zπ for each tuple π,

zTM [y]z =
∑

π,ρ Eµ zπxπxρzρ = Eµ (
∑

π zπx
π)2 ≥ 0

so M [y] � 0 !!

Polynomial optimization

f∗0
.
= min { f0(x) : fi(x) ≥ 0, 1 ≤ i ≤ m, x ∈ Rn},

where fi(x) =
∑

π∈S(i) ai,π x
π.

So f∗0 = infy
∑

π a0,πyπ, over all K-moment vectors y;

(y is a K-moment if there is a measure µ over K with yπ = Eµxπ for each tuple π)

(K
.
= {x ∈ Rn : fi(x) ≥ 0, 1 ≤ i ≤ m}).

So: y0 = 1. Can we say more? Define v = (xπ) (all monomials). Also define M [y]
.
= Eµvv

T .

So for any tuples π, ρ, M [y]π,ρ = Eν xπxρ = Eνx
π+ρ = yπ+ρ

So for any (∞-dimensional) vector z, indexed by tuples, i.e. with entries zπ for each tuple π,

zTM [y]z =
∑

π,ρ Eµ zπxπxρzρ = Eµ (
∑

π zπx
π)2 ≥ 0

so M [y] � 0 !!

so

f∗0 ≥ min
∑
π

a0,π yπ

s.t. y0 = 1,

M � 0,

Mπ,ρ = yπ+ρ, for all tuples π, ρ

the zeroth row and column of M both equal y. (redundant)

Polynomial optimization

f∗0
.
= min { f0(x) : fi(x) ≥ 0, 1 ≤ i ≤ m, x ∈ Rn},

where fi(x) =
∑

π∈S(i) ai,π x
π.

So f∗0 = infy
∑

π a0,πyπ, over all K-moment vectors y;

(y is a K-moment if there is a measure µ over K with yπ = Eµxπ for each tuple π)

(K
.
= {x ∈ Rn : fi(x) ≥ 0, 1 ≤ i ≤ m}).

So: y0 = 1. Can we say more? Define v = (xπ) (all monomials). Also define M [y]
.
= Eµvv

T .

So for any tuples π, ρ, M [y]π,ρ = Eν xπxρ = Eνx
π+ρ = yπ+ρ

So for any (∞-dimensional) vector z, indexed by tuples, i.e. with entries zπ for each tuple π,

zTM [y]z =
∑

π,ρ Eµ zπxπxρzρ = Eµ (
∑

π zπx
π)2 ≥ 0

so M [y] � 0 !!

so

f∗0 ≥ min
∑
π

a0,π yπ

s.t. y0 = 1,

M � 0,

Mπ,ρ = yπ+ρ, for all tuples π, ρ

the zeroth row and column of M both equal y.

An infinite-dimensional semidefinite program!!

f∗0
.
= min { f0(x) : fi(x) ≥ 0, 1 ≤ i ≤ m, x ∈ Rn},

where fi(x) =
∑

π∈S(i) ai,π x
π.

f∗0 ≥ min
∑
π

a0,π yπ

s.t. y0 = 1,

M � 0,

Mπ,ρ = yπ+ρ, for all tuples π, ρ

the zeroth row and column of M both equal y.

f∗0
.
= min { f0(x) : fi(x) ≥ 0, 1 ≤ i ≤ m, x ∈ Rn},

where fi(x) =
∑

π∈S(i) ai,π x
π.

f∗0 ≥ min
∑
π

a0,π yπ

s.t. y0 = 1,

M � 0,

Mπ,ρ = yπ+ρ, for all tuples π, ρ

the zeroth row and column of M both equal y.

Restrict: pick an integer d ≥ 1. Restrict the SDP to all tuples π with |π| ≤ d.

f∗0
.
= min { f0(x) : fi(x) ≥ 0, 1 ≤ i ≤ m, x ∈ Rn},

where fi(x) =
∑

π∈S(i) ai,π x
π.

f∗0 ≥ min
∑
π

a0,π yπ

s.t. y0 = 1,

M � 0,

Mπ,ρ = yπ+ρ, for all tuples π, ρ

the zeroth row and column of M both equal y.

Restrict: pick an integer d ≥ 1. Restrict the SDP to all tuples π with |π| ≤ d.

Example: d = 8. So we will consider the monomial x2
1 x

4
2 x3 because 2 + 4 + 1 ≤ 8.

But we will not consider x3x
7
5x8, because 1 + 7 + 1 > 8.

f∗0
.
= min { f0(x) : fi(x) ≥ 0, 1 ≤ i ≤ m, x ∈ Rn},

where fi(x) =
∑

π∈S(i) ai,π x
π.

f∗0 ≥ min
∑
π

a0,π yπ

s.t. y0 = 1,

M � 0,

Mπ,ρ = yπ+ρ, for all tuples π, ρ

the zeroth row and column of M both equal y.

Restrict: pick an integer d ≥ 1. Restrict the SDP to all tuples π with |π| ≤ d.

f∗0 ≥ min
∑
π

a0,π yπ

s.t. y0 = 1,

the rows and columns of M , and the entries in y, indexed by tuples of size ≤ d

M � 0,

Mπ,ρ = yπ+ρ, for all appropriate tuples π, ρ

the zeroth row and column of M both equal y,

f∗0
.
= min { f0(x) : fi(x) ≥ 0, 1 ≤ i ≤ m, x ∈ Rn},

where fi(x) =
∑

π∈S(i) ai,π x
π.

f∗0 ≥ min
∑
π

a0,π yπ

s.t. y0 = 1,

M � 0,

Mπ,ρ = yπ+ρ, for all tuples π, ρ

the zeroth row and column of M both equal y.

Restrict: pick an integer d ≥ 1. Restrict the SDP to all tuples π with |π| ≤ d.

f∗0 ≥ min
∑
π

a0,π yπ

s.t. y0 = 1,

the rows and columns of M , and the entries in y, indexed by tuples of size ≤ d

M � 0,

Mπ,ρ = yπ+ρ, for all appropriate tuples π, ρ

the zeroth row and column of M both equal y

A finite-dimensional semidefinite program!!

f∗0
.
= min { f0(x) : fi(x) ≥ 0, 1 ≤ i ≤ m, x ∈ Rn},

where fi(x) =
∑

π∈S(i) ai,π x
π.

f∗0 ≥ min
∑
π

a0,π yπ

s.t. y0 = 1,

M � 0,

Mπ,ρ = yπ+ρ, for all tuples π, ρ

the zeroth row and column of M both equal y.

Restrict: pick an integer d ≥ 1. Restrict the SDP to all tuples π with |π| ≤ d.

f∗0 ≥ min
∑
π

a0,π yπ

s.t. y0 = 1,

the rows and columns of M , and the entries in y, indexed by tuples of size ≤ d

M � 0,

Mπ,ρ = yπ+ρ, for all appropriate tuples π, ρ

the zeroth row and column of M both equal y

A finite-dimensional semidefinite program!! But could be very large!!

f∗0
.
= min { f0(x) : fi(x) ≥ 0, 1 ≤ i ≤ m, x ∈ Rn},

where fi(x) =
∑

π∈S(i) ai,π x
π.

f∗0 ≥ min
∑
π

a0,π yπ

s.t. y0 = 1,

M � 0,

Mπ,ρ = yπ+ρ, for all tuples π, ρ

the zeroth row and column of M both equal y.

Restrict: pick an integer d ≥ 1. Restrict the SDP to all tuples π with |π| ≤ d.

f∗0 ≥ min
∑
π

a0,π yπ

s.t. y0 = 1,

the rows and columns of M , and the entries in y, indexed by tuples of size ≤ d

M � 0,

Mπ,ρ = yπ+ρ, for all appropriate tuples π, ρ

the zeroth row and column of M both equal y

A finite-dimensional semidefinite program!! But could be very large!!

• Can be strengthened to account for the constraints fi(x) ≥ 0.

f∗0
.
= min { f0(x) : fi(x) ≥ 0, 1 ≤ i ≤ m, x ∈ Rn},

where fi(x) =
∑

π∈S(i) ai,π x
π.

f∗0 ≥ min
∑
π

a0,π yπ

s.t. y0 = 1,

M � 0,

Mπ,ρ = yπ+ρ,

the zeroth row and column of M both equal y.

Restrict: pick an integer d ≥ 1. Restrict the SDP to all tuples π with |π| ≤ d.

f∗0 ≥ min
∑
π

a0,π yπ

s.t. y0 = 1,

the rows and columns of M , and the entries in y, indexed by tuples of size ≤ d

M � 0,

Mπ,ρ = yπ+ρ, for all appropriate tuples π, ρ

the zeroth row and column of M both equal y

A finite-dimensional semidefinite program!! But could be very large!!

• Can be strengthened to account for the constraints fi(x) ≥ 0.

• This is the level- d Lasserre relaxation (abridged).

f∗0
.
= min { f0(x) : fi(x) ≥ 0, 1 ≤ i ≤ m, x ∈ Rn},

where fi(x) =
∑

π∈S(i) ai,π x
π.

f∗0 ≥ min
∑
π

a0,π yπ

s.t. y0 = 1,

M � 0,

Mπ,ρ = yπ+ρ,

the zeroth row and column of M both equal y.

Restrict: pick an integer d ≥ 1. Restrict the SDP to all tuples π with |π| ≤ d.

f∗0 ≥ min
∑
π

a0,π yπ

s.t. y0 = 1,

the rows and columns of M , and the entries in y, indexed by tuples of size ≤ d

M � 0,

Mπ,ρ = yπ+ρ, for all appropriate tuples π, ρ

the zeroth row and column of M both equal y

A finite-dimensional semidefinite program!! But could be very large!!

• Can be strengthened to account for the constraints fi(x) ≥ 0.

• This is the level- d Lasserre relaxation (abridged).

• Dominates the SOS relaxations. Up to a point.

