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Power flow problem in its simplest form

Parameters:

e For each line km, its admittance b, + 796m = bmr + 7Gmk

e For each bus k, voltage limits Vkmin and V"X

e For each bus k., active and reactive net power limits

ppin - prmax s Quinand QX

Variables:

e For each bus k, complex voltage er + 7 fr

Notation: For a bus k, (k) = set of lines incident with k

Basic problem



Find a solution to:

Plgnin < Z [ gkm(ez + fl?) — gkm(ekem + fk:fm) -+ bkm(ekfm — fkem)} < F
km e (k)
win < N [ —bemleh + [+ brmleren + fifum) + Grm(erfo — frem)] < G
kmed(k)
(‘/kmin)Q < 62 4+ f]<2; < (‘/'k:max)Q7

for each bus &k =1,2,...

Many possible variations
e Line limits

e Various optimization versions



Quadratically constrained, quadratic programming problems

(QCQPs):
min  fo(z)
st. fi(z) >0, 1<i<m
r € R"
Here,

filx) = o' Mz +clz +d,

is a general quadratic



Each M; is n X n, wlog symmetric
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Quadratically constrained, quadratic programming problems

(QCQPs):
min  fo(z)
st. fi(z) >0, 1<i<m
r € R"
Here,

filx) = o' Mz +clz +d,

is a general quadratic



Each M; is n X n, wlog symmetric

Special case: Linear Programming

min c¢ x
st. Ax > b,

r e R"



Quadratically constrained, quadratic programming problems

(QCQPs):
min  fo(z)
st. fi(z) >0, 1<i<m
r € R"
Here,

filx) = o' Mz +clz +d,

is a general quadratic



Each M; is n X n, wlog symmetric

Special case: Convex Quadratic Programming:
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W* = min — g 7
i
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i
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W* = —n, iff there exists a subset J C {1,...,n} with

Y - Yo,
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e Lavaei & Low (2011), van Hentenryck & Coffrin (2014): AC-OPF is NP-

hard on trees
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Folklore result: QCQP is NP-hard

Let wy,wo, ..., w, be integers, and consider:

W* = min — g 7
i
s.t. E W; T; = O,
i

1<y <1, 1<i<n.

W* = —n, iff there exists a subset J C {1,...,n} with

Y - Yo,
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Actually, exactly what are “NP-hard” problems?

e Really, really hard problems?

e But it is really, really hard to say exactly how they are hard?
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1s are stored
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e Yes/no problems (like integer partition)

e A problem is in the class NP if for any “YES” instance there exists a
verification in time polynomial in the number of bits needed to describe

the instance

Example: given integers wq, wo, ..., w,, does there exist a subset J with
S = S
jeJ Jjé&J

Note: We are simply verifying a certificate that somebody gave us

Proxy concept: problems in NP are “well-defined”

e A problem class P is NP-complete if any problem in the class NP

can be reduced to a problem 7P in polynomial time

e As a consequence, if somebody smart figured a way to solve P in poly-



nomial time, we can then solve every problem in NP in polynomial

time

e Fixamples: traveling salesman problem, 3-SAT, graph coloring, the prob-

lem above
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But ... not all NP-hard problems are equally hard

Again: given integers wi, wo, . .., w,, does there exist a subset J with
1 n
S = Y = 1Y,
jed jeJ j=1

It is hard (NP-hard) to answer YES, or NO, exactly

It is not hard to answer YES or NO, approximately:



Fix 0 < € < 1. Then we can compute a set J

e Such that

1;€§n:wj < ij < 1—2ke§n:wj
J=1 j=1

jeJ

e In time polynomial in 7 and e *

(So approximate feasibility, in “practicable” time)

Problem is weakly NP-hard



Folklore result: QCQP is NP-hard

Let wy,ws, ..., w, be integers, and consider:

W* = min — g 7
i
s.t. E w; x; = 0,
i

1<y <1, 1<i<n.

W* = —n, iff there exists a subset J C {1,...,n} with
Su = S
JjeJ j¢J

e Lavaei & Low (2011), van Hentenryck & Coffrin (2014): AC-OPF is NP-



hard on trees
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— linearly constrained QCQP is as hard as any integer programming

problem

Example: TSP, graph coloring, set covering, etc.

N O nice approximation algorithms exist for these

They are called strongly NP-hard

A. Verma (2009): AC-OPF is strongly NP-hard.
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Even more general than QCQP:

Solving systems of polynomial equations.

Problem: given polynomials p; : R" — R, for 1 <7< m
find x € R" s.t. pj(x) =0, V1

Observation. Can be reduced to QCQP.
Example: find a root for 3v%w — v* 4+ 7 = 0.
Equivalent to the system on variables v, vo, vy, vg, w, y and c:

2

cc =1

V2 — cvy = 0

v —cvy = 0

vovs — cvg = 0
vew —cy = 0

3cy —cvy = —7

This is a polynomial-time reduction
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approximately.
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What is meant by approximately?

And what do we mean by on the average?
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“Approximately”

Q: How do practitioners (e.g. power engineers) solve systems of nonlinear
equations?’

A: Newton-Raphson, of course!

— If we start near a solution, quadratic convergence

To solve F'(x) = 0, where F' : R®" — R™
Iterate: zFt! = — [J(:ck)}_l F(zk) + ¢, k=1,...

J(zM)y = gi(=") 1<ij<n
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“On the average” in polynomial time

A QCQP could be quite difficult!
e.g., a unique feasible solution, which additionally is an irrational vector

Example in R?:
r] + x%

2
T + T4

VANAY

1T — T2
a7 + (z2—1)°

IA I
_ O = =



“On the average” in polynomial time

A QCQP could be quite difficult!
e.g., a unique feasible solution, which additionally is an irrational vector

Example in R?:

VANAY

8
— N
+
] B
[N}
[
= 5
[\)
(Al
—_ O = =
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“On the average” in polynomial time

A QCQP could be quite difficult!
e.g., a unique feasible solution, which additionally is an irrational vector

but a “nearby” problem instance could be much easier

e View a problem as a vector in an appropriate space

e Endow that space with an appropriate metric
(Bombieri-Weyl Hermitian product)

e In that space, consider the set of problems given by a ball (of appropriate radius) around a given
problem

e We want the algorithm to is fast, on average, in that ball

— A Las Vegas algorithm: it may fail to converge, but with probability zero
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Can a zero of n polynomial equations on n unknowns be found
approximately.

on the average in polynomial time,

with a uniform algorithm?

(abridged; but we are cheating)

e Beltran and Pardo (2009) — a randomized (Las Vegas) uniform algorithm
that computes an approximate zero in expected polynomial time

e Biirgisser, Cucker (2012) — a deterministic O(n'°¢!°¢™) (uniform) algo-
rithm for computing approximate zeros

e Techniques: Homotopy (path-following method solving a sequence of
problems), Newton’s method
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Smale’s 17" problem

Can a zero of n polynomial equations on n unknowns be found
approximately.
on the average in polynomial time?

(abridged; and we are cheating)

e Beltran and Pardo (2009) — a randomized (Las Vegas) uniform algorithm
that computes an approximate zero in expected polynomial time

e Biirgisser, Cucker (2012) — a deterministic O(n!°¢!°¢™) (uniform) algo-
rithm for computing approximate zeros

e Techniques: Homotopy (path-following method solving a sequence of
problems), Newton’s method

But we are cheating: All of this is over C", not R"

So what can be done over the reals? Let’s start with “simple” results.



Simplest example: S-Lemma (abridged)
Let f, g : R® — R be quadratic functions (degree < 2 polynomials).
Suppose there exists & € R™ such that g(&) > 0. Then
f(x) > 0 whenever g(x) >0
if and only
there exists =~ > 0 such that  f(x) > vg(x) forall x & R".
Yakubovich (1971), also much earlier, related work

~ acts as a Lagrange multiplier.
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Quick aside:

Suppose we want to solve: min{ f(x) : g(x) > 0}; here f, g quadratics
Algorithm. (Binary search)

1. Guess a real 6.

2. Check if f(x) —0 >0, V xst. g(x)>0.

3. If “yes”, we know F* > 0;if not, F* < 0.

4. Either way we can update 6, and repeat. Works under compactness of {x : g(x) > 0 }.
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Simplest example: S-Lemma (abridged)

Let f, g : R®™ — R be quadratic functions (degree < 2 polynomials).
Suppose there exists & € R™ such that g(&) > 0. Then

f(x) > 0 whenever g(x) >0
if and only

there exists =~ > 0 such that  f(x) > vg(x) forall x & R".
Yakubovich (1971), also much earlier, related work

~ acts as a Lagrange multiplier.

Corollary: Can solve
min{f(z) : g(z) > 0}

in polynomial time (using semidefinite programming)

— Time for some math



Want to solve: min{ f(x) : g(x) > 0}
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Given a real 0, is it the the case that f(x) — 6 > 0 whenever g(x) > 07
S-Lemma: iff there exists real v > 0s.t. f(x) — 6 —vyg(x) >0 Vzx €R"”
Notation: f(z) = xTAx + 2aTx + ay, g(x) = =T Bz + 2bTx + by,

So S-Lemma statement is:

A—~yB a—~b

(27, 1) (‘f) > 0 Va2 eR"
(@ — b)Yt ag— by — 0
Can be proved that this is equivalent to saying:
A—~B a—~b
= 0
(@ —~b)" ag— by —0
So in short, min{f(x) : g(x) > 0} is equivalent to
max 0
subject to
A—~vB a—~b
= 0

(a—~b)T ag— by — 0
v>0

which is an SDP (semidefinite program) on variables -, 6.



Many applications for the S-Lemma

e Control Theory

e Dynamical Systems

e Robust error estimation
e Robust optimization



An application: the trust-region subproblem

min{f(z) : g(z) < 0}

can be solved in polynomial time, where f, g quadratics, g convex

Scale, rotate, translate:

min{f(z) : ||z|| <1}
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— Unconstrained optimization min{f(z) : * € R"}
e f(x) can be antyhing
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Digression: application of trust-region subproblem in engineering

— Unconstrained optimization min{f(z) : * € R"}
e f(x) can be antyhing
e constraints mapped into f(x) by using penalties

Example: min{ g(zy,x2) : 1/2 < xjandax, < 1}

becomes:

min g(x1,z2) + alog(zy —1/2) + alog(l — x9)

subject to:  x1,x2 unconstrained

o > 0 a “barrier” parameter

ANN
/
i
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Digression: application of trust-region subproblem in engineering

— Unconstrained optimization min{f(z) : * € R"}
Algorithm

e Given an iterate w?, sample f(«) in a neighborhood |z — z*|| < A.

® = sample

e Get pairs (y', f(y')), (v, f(¥?)),--., (y™, f(y™))

e Using these samples, construct a quadratic “model” of f(x)
(model = spline, least squares estimate, etc).

e Call this model: Q(x)
e Solve: min{ Q(x) : ||z — w'|| < A}. This is the trust-region subproblem.

e The solution becomes w*?!.
Or: conduct a line-search from w? to the solution so as to compute w!*?.



Digression: application of trust-region subproblem in engineering

— Unconstrained optimization min{f(z) : * € R"}
Algorithm

e Given an iterate w?, sample f(«) in a neighborhood |z — z*|| < A.

® = sample

e Get pairs (y', f(y')), (v, f(¥?)),--., (y™, f(y™))

e Using these samples, construct a quadratic “model” of f(x)
(model = spline, least squares estimate, etc).

e Call this model: Q(x)
e Solve: min{ Q(x) : ||z — w'|| < A}. This is the trust-region subproblem.

e The solution becomes w*?!.
Or: conduct a line-search from w? to the solution so as to compute w!*?.

e General purpose codes: KNITRO, LOQO have been used on OPF.



An application: the trust-region subproblem

min{f(z) : g(z) < 0}

can be solved in polynomial time, where f, g quadratics, g convex

Scale, rotate, translate:
min{ f(z) : [[z] < 1}

can be solved in poly time — log e™1

Y. Ye (1992) — logloge™*

How about extensions of the trust-region subproblem?



Sturm-Zhang (2003)
Where f(x) is a quadratic,

min  f(x)
st x| <1
a'x < b  (one linear side constraint)

can be solved in polynomial time, as can

min  f(x)
8.t x| <1
|z —2"|| < ry  (one additional convex ball constraint)

Ye-Zhang (2003)

min  f(x)
st |lzf] <1
alx < b i=1,2
(alx —b))(azz —by) = 0

(two linear side constraints, but at least one binding)
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Anstreicher-Burer (2012)

In polynomial time, one can solve a problem of the form

min 21 Qx +clx
st ||zl

T
a; T

IA A
&
I
\.l—‘
NG

provided the two linear constraints are parallel:

W/ A 1 two linear constraints

ball constraint

—min{z'Qr+c'z 1<z <wu, |z <1} (%)

restate as: min ZQinij + Tz
st. Xpn+lu < (I+u)x
1 X1 —lz]| < x1—1
|lur — X1|] < u—axy
> X<
j
X = xx’
T

Lemma: This problem has an optimal solution with X = xz*, i.e. a rank-1 solution.
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Burer-Yang (2012)
In polynomial time, one can solve a problem of the form
min 27 Qz +
st x| <
alr < b 1<i<m

if no two linear inequalities are simultaneously binding in the feasible region

N

7

Lemma: the following problem has an optimal solution with X = zz7.

min E qi; Xij + lr
0]

st. Xpy+lu < (I4+uw)x
|bir — Xa|| < b —alw i<m
bib; —b.alx —balz +al Xa;, < 0 1< j3<m
J J" 9 7 J

ZijSl s XELUZCT

J



Generalizations?
(B. and Alex Michalka, SODA 2014)

min 2T Qz + 'z

st o=l <rn, heS,
|z — pnl| =70, h €K,
reP ={zeR": Az <b}

Theorem.
For each fixed |S|, | K| can be solved in polynomial time if either

(1) |S| > 1 and polynomially large number of faces of P intersect

(z eR": o — mll <7},
hes

or

(2) |S| = 0 and the number of rows of A is bounded.
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min 2T Qz + 'z

st o=l <rn, heS,
|z — pnl| =70, h €K,
reP ={zeR": Az <b}

Theorem.
For each fixed |S|, | K| can be solved in polynomial time if either

(1) |S| > 1 and polynomially large number of faces of P intersect

(z eR": o — mll <7},
hes

or

(2) |S| = 0 and the number of rows of A is bounded.

e Does not use semidefinite programming

e Note: the curvature in all quadratics is the same
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Why not general QCQP?

(QCQP): min 2’ Qx + 2z
s.t. xTAix+2biTx+n >0 1=1,....m
xr € R"

—s form the semidefinite relaxation

(SR): min (0 CT).X

c Q
e
s.t. (Z i@li).x >0 i=1,....m

X>0, X 1=1.
Here, for symmetric matrices M, NN,

MeN = Z My N
h,k

Why do we call it a relaxation?

Given x feasible for QCQP, the matrix (1,z7) < i ) feasible for SR and with the same value
So the value of problem SR is a lower bound for QCQP
So if SR has a rank-1 solution, the lower bound is exact.

Unfortunately, SR typically does not have a rank-1 solution.



Theorem (Pataki, 1998):

An SDP

(SR): min M e X
st. N'eX >b, i=1,....,m
X >~ 0, Xann X n matrix,

always has a solution of rank O(m'/?), and this result is best possible.



Generalizations?
(B. and Alex Michalka, SODA 2014)

min 2T Qz + 'z

st.  |lo—pp|| <rp, heS,
|z = pnll =70, hEK,
reP ={zeR": Az <b}

Theorem.
For each fixed |S|, | K| can be solved in polynomial time if either

(1) |S| > 1 and polynomially large number of faces of P intersect

(z eR": o — mll <71},
hes

or

(2) |S| = 0 and the number of rows of A is bounded.

e Does not use semidefinite programming

e Note: the curvature in all quadratics is the same
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The trust-region subproblem:.

min 2’ Qz+ 'z

st. Jlo—pl <7

Generalization: CDT (Celis-Dennis-Tapia) problem

min 2’ Qux + ¢
s.t. xTle + c{x + d
ITQQZU + ch + dy
where Q1 > 0, Q2 >0

IA

IA



Even more general than QCQPs
Barvinok (STOC 1992):

For each fixed p > 1, there is a polynomial-time algorithm for deciding feasibility of a system

Mz = 0, 1<i<p,
|z = 1, zeR"

where the M, are general matrices.
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Even more general than QCQPs
Barvinok (STOC 1992):

For each fixed p > 1, there is a polynomial-time algorithm for deciding feasibility of a system

Mz = 0, 1<i<p,
|z = 1, zeR"

where the M, are general matrices.

e Non-constructive. Algorithm says “yes” or “no.”

e Computational model?

Stated as: computation over the reals using infinite precision

e There is a separate community in mathematics dealing with these problems
e Methodology does not use semidefinite programming
e Instead, uses algebraic geometry

e Explicit emphasis in handling “cases”



A (better?) alternative: e-feasibility

For each fixed p > 1, given a system

Mz = 0, 1<i<p,
|lz|| = 1, xzeR"

and given 0 < € < 1, either

e Prove that the system is infeasible, or

e Output & € R™ with

in time polynomial in the data and in loge™!.



A (better?) alternative: e-feasibility

For each fixed p > 1, given a system

cIMx = 0, 1<i<p,
|lz|| = 1, xzeR"

and given 0 < € < 1, either

e Prove that the system is infeasible, or

e Output & € R™ with

—€ S .CCTMZ'
I—e < 2|

in time polynomial in the data and in loge™!.

Two issues: Constructiveness, and e-feasibility
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Modification to Barvinok’s result

Assume that for each fixed p > 1, there is an algorithm that given a system

Mz = 0, 1<i<p,
|lz|| = 1, xzeR"

and given 0 < € < 1, either

e Proves that the system is infeasible, or

e Proves that is e-feasible,

in time polynomial in the data and in loge!.
(so still nonconstructive)

Assuming such an algorithm exists ...



Theorem.

For each fixed m > 1 there is a polynomial-time algorithm that, given an optimization problem
min  fo(z) = 2TQox + clx

S.t. a:Tin—i—csz—}—di <0 1<1<m,

where Q1 > 0, and 0 < € < 1, either

(1) proves that the problem is infeasible,

or

(2) computes an e-feasible vector & such that there exists no feasible € R™ with fo(x) < f(&) — €.

The complexity of the algorithm is polynomial in the number of bits in the data and in log e~}



Theorem.

For each fixed m > 1 there is a polynomial-time algorithm that, given an optimization problem
min  fo(z) = 2TQox + clx

S.t. a:Tin—i—csz—}—di <0 1<1<m,

where Q1 > 0, and 0 < € < 1, either

(1) proves that the problem is infeasible,

or

(2) computes an e-feasible vector & such that there exists no feasible € R™ with fo(x) < f(&) — €.

The complexity of the algorithm is polynomial in the number of bits in the data and in log e~}

— Related algebraic geometry work by Grigoriev, Pasechnik, other Russians
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Let f, g : R® — R be quadratic functions (degree < 2 polynomials).
Suppose there exists & € R™ such that g(&) > 0. Then
f(x) > 0 whenever g(x) >0 iffexists v >0 st.  f(x) > vg(x) foral x € R™
ie., iff exists v >0 s.t. (f—~g)(x) > 0 foral x € R™
in other words, Hilbert (1888): iff exists v > 0, Sp(x) s.t. f(x) = So(x) + vg(x)
where Sp(x) is a sum of squares of polynomials ! This paper started the field of algebraic geometry
And how about generalizations of the S-Lemma?
Given quadratics Qo(x), Q1(x), ..., Qm(x) with m > 2. is it true that
Qo(x) > 0 whenever Q;(x) >0, 1 <1< m,

iff exist ~v; > 0, So(z), st. Qo(x) = So(x) + > ;v Y%Qi(x), So(x) = asum of squares?

No.
However*: Qo(xz) > 0  whenever Q;(x) >0, 1<1i<m,
iff exist  So(x), S1(x),...Sm(z) st. Qo(x) = So(x) + > v, Si(x)Qi(x)

where each S;(x) is a sum of squares of polynomials. Putinar (1993).
*={r eR": Qi(x) >0, 1 <i<m} is bounded (and represented as such)



More complete statement of Putinar’s theorem — still abridged
e Given polynomials Py(x), G1(x),...,Gn(x), T € R™,

e One of the Gj(x) being ||z]|* < R?



More complete statement of Putinar’s theorem — still abridged
e Given polynomials Py(x), Gi(x),...,Gn(x), x € R",
e One of the Gj(x) being ||z]|* < R?
e Then: FPy(x) >0 in {x : Gi(x) >0, 1 <i<m} implies:

Py(z) = So(x) + X7, Si(®)Gi(w)

where each S;(«) is a sum of squares of polynomials



More complete statement of Putinar’s theorem — still abridged
e Given polynomials Py(x), G1(x),...,Gn(x), T € R™,
e One of the Gj(x) being ||z]|* < R?

e Then: FPy(x) >0 in {x : Gi(x) >0, 1 <i<m} implies:

Py(z) = So(x) + X7, Si(®)Gi(w)

where each S;(«) is a sum of squares of polynomials

Questions

e What are the S;(x)? Can we compute them efficiently?



More complete statement of Putinar’s theorem — still abridged
e Given polynomials Py(x), Gi(x),...,Gn(x), x € R",
e One of the Gj(x) being ||z]|* < R?
e Then: FPy(x) >0 in {x : Gi(x) >0, 1 <i<m} implies:

Py(z) = So(x) + X7, Si(®)Gi(w)

where each S;(«) is a sum of squares of polynomials

Questions

e What are the S;(x)? Can we compute them efficiently?

e Can we at least estimate them? Can we say anything about their degree?



More complete statement of Putinar’s theorem — still abridged
e Given polynomials Py(x), Gi(x),...,Gn(x), x € R",
e One of the Gj(x) being ||z]|* < R?
e Then: FPy(x) >0 in {x : Gi(x) >0, 1 <i<m} implies:

Py(z) = So(x) + X7, Si(®)Gi(w)

where each S;(«) is a sum of squares of polynomials

Questions

e What are the S;(x)? Can we compute them efficiently?

e Can we at least estimate them? Can we say anything about their degree?

Nie and Schweighofer (2005): upper bound on the max degree, as a function of the Py, Gy, . ..



More complete statement of Putinar’s theorem — still abridged
e Given polynomials Py(x), Gi(x),...,Gn(x), x € R",
e One of the Gj(x) being ||z]|* < R?
e Then: FPy(x) >0 in {x : Gi(x) >0, 1 <i<m} implies:

Py(z) = So(x) + X7, Si(®)Gi(w)

where each S;(«) is a sum of squares of polynomials

Questions

e What are the S;(x)? Can we compute them efficiently?

e Can we at least estimate them? Can we say anything about their degree?

Nie and Schweighofer (2005): upper bound on the max degree, as a function of the Py, Gy, . ..

e How can Putinar’s result help us solve

min  Fy(x)
s.t. Gi(x) > 0, 1<i<m?



P*

min
S.t.

Po(x)

1 <1< m?
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P* = min Py(x)
s.t. Gi(x) > 0, 1<i<m?

Idea: constrain the degrees of the sum-of-square “certificate” polynomials S;(x)
Pick an integer t > 0, and define
P = sup p
st.  Po(x) — p = So(x) + >, Si(z)Gi(x)
each S;(x) SOS

deg(So(z)) < 2t, deg(Si(z)gi(x)) < 2t.
o PO < P

e P® — P*as t — +oo (finite convergence)

e Does this help?



sup p
Py(z) — p = So(w) + >.;7, Si(x)Gi(w)
each S;(xz) SOS

deg(So(z)) < 2t, deg(Si(z)gi(x)) < 2t.



st. Po(x) — p = So(x) + >0, Si(x) Gi(x)

Here, blue polynomials are known, black polynomials are unknown
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FACT: P® can be computed as a semidefinite program of dimension O(n?)

FACT: Checking whether a given polynomial F'(x) is SOS can be stated as an SDP
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st.  Po(x) — p = So(z) + D", Si(x)Gi(x)
each S;(xz) SOS
deg(So(z)) < 2t, deg(Si(z)gi(x)) < 2t.
FACT: P® can be computed as a semidefinite program of dimension O(n?)

FACT: Checking whether a given polynomial F'(x) is SOS can be stated as an SDP

Example:
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So: if a given polynomial F'(x,x2) is a sum of squares of quadratic polynomials in @1, x5, then:
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Something different

Consider the optimization problem

ff* = min f(x) : € K

where f(x) continuous, K C R" compact

fr < flx), VeekK

so if p is a measure over K, i.e. /du = 1,then f* < E, f(x)
K

and so
fr < inf E, f(x)

Suppose y € K has f(y) = f*, andlet d, be the measure with weight 1 at y

Then f* = f(y) = Es, f(x)

And so

f* = inf,E, f(x)

How do we use this fact?
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Polynomial optimization

Consider the polynomial optimization problem

fo = min{ fo(z) : fi(x) 20, 1<:<m, z€R"}
where each f;(z) is a polynomial ie. fi(z) = > c54) in @™
e Each = is a tuple 7, ms,..., T, of nonnegative integers, and =™ = ' x3* ... ™"
e Bach S(2) is a finite set of tuples, and the a; . are reals.
Weknow f; = inf,E, fo(x), over all measures pover K = {x € R" : fi(x) >0, 1 <1 < m}.
ie. fy = inf { ZWES(O) QoY : Yisa K—moment}
Here, y is a K-moment if there is a measure p over K with y, = [E,x™ for each tuple

(Cough! Here, y is an infinite-dimensional vector). Can we make an easier statement?
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fi = min{fo(a) : file) >0, 1<i<m, zeR},
where fi(x) = > cg() Qi T"
So fy = infy ) _aoYx, over all K-moment vectors y;

(yis a K-moment if there is a measure p over K with y, = E,x™ for each tuple )
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the zeroth row and column of M both equal y. (redundant)



Polynomial optimization

fi = min{fo(a) : file) >0, 1<i<m, zeR},
where fi(x) = > cg() Qi T"
So fy = infy ) _aoYx, over all K-moment vectors y;

(yis a K-moment if there is a measure p over K with y, = E,x™ for each tuple )

(K= {z €R" : fi(x) >0, 1<i<m})

So: yo = 1. Can we say more? Define v = (2™) (all monomials). Also define M[y] = E,vv’.

So for any tuples m, p, Myls, = E, 2"z’ = E, ™" = y,.,
So for any (oco-dimensional) vector z, indexed by tuples, i.e. with entries z, for each tuple mr,

Z’Mylz = Y., E.zx"zz, = E, (3, zzz™)? > 0

so M[y] = 0 !l
SO
fi = min) apqys
s.t. Yo = 1,
M » 0,
My, = Yrip, for all tuples m,p
the zeroth row and column of M both equal .

An infinite-dimensional semidefinite program!!
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fo = min{ fo(x) : fi(x) >0, 1<i:<m, x&R"}
where fi(x) = > cg5() Qi T"

fy > min)_ ao-ys
™

s.t. Yo = 1,
M > 0,
My, = Yrip, for all tuples m,p
the zeroth row and column of M both equal .

Restrict: pick an integer d > 1. Restrict the SDP to all tuples 7 with |7| < d.

Example: d = 8. So we will consider the monomial w% :13‘2l x3 because 24+4+1 < 8.

But we will not consider 33313g$8, because 1 +7+1 > 8.
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the zeroth row and column of M both equal .
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fo = min{ fo(z) : fi(x) 20, 1<i<m, xR},

where fi(z) = > cs3) Qi T

fi > minY a0 v,
s.t. Yo = 1,
M > 0,

Mw,p = Yn+p;
the zeroth row and column of M both equal .

Restrict: pick an integer d > 1. Restrict the SDP to all tuples 7 with |7| < d.

f{)|< > min Z o, Yr
0

s.t. Yo = 1,
the rows and columns of M, and the entries in y, indexed by tuples of size < d
M > 0,
My, = Yri+p, for all appropriate tuples 7, p
the zeroth row and column of M both equal y

A finite-dimensional semidefinite program!! But could be very large!!

e Can be strengthened to account for the constraints f;(x) > 0.
e This is the level- d Lasserre relaxation (abridged).

e Dominates the SOS relaxations. Up to a point.



