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Machine learning and AI research can be Thought of as Building the Brain
of the 4th Industrial and Revolutions
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Where we are - Teaching Machines to See
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Where we are - Teaching Machines to Talk
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Next Step - Teaching Machines to Discover
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Research Thrusts in Time Series Analysis

Sponsors:
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Research Thrusts in Network Analysis

Novel machine learning models for network analysis and inference:

• Network anomaly detection [SDM 2010; ICDM 2012; KDD 2014]

• Robust network inference [ICML 2015; NIPS 2017; WSDM 2017]

• Network analysis for Recommendation [ICML 2012]

• Network embedding via deep learning models [IJCAI workshop, 2107]

Sponsors:
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NSF CyberSEES Project
Objectives: a marriage between deep learning approaches and physics based simulation
models
Application: casual attribution of urban heat island from heterogeneous data collections
Research problems

• Multi-rate multiresolution
• Heterogeneous data quality
• Interpretation of deep learning models
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Deep Learning as Blackbox
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How Deep Learning is Perceived by Students
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Importance of Explainable Artificial Intelligence - I
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Importance of Explainable Artificial Intelligence - I
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Importance of Explainable Artificial Intelligence - II

How can I trust any machine learning algorithm? [Ribeiro et al, 2016]
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Interpretable Model is Necessary

Interpretable predictive models are shown to result in faster adoptability of machine learning
models.

• Simple and commonly use models

• Easy to interpret, mediocre performance

• Deep learning solutions

• Superior performance, hard to explain

Can we learn interpretable models with robust prediction performance?
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Ongoing Work on Explainable Machine Learning Models

Direct Interpretation

• [Garson, 1991]: estimating feature importance directly from network weight connections

• [Hechtlinger, 2016]: computing output gradients with respect to input features

• [Itti et al., 1998; Mnih et al., 2014; Xu et al., 2015]: attention models

Indirect Interpretation

• [Provost et al., 1997]: sensitivity analysis of feature contributions to a neural network’s
output

• [Ribeiro et al., 2016]: local interpretability for black-box models

• [Che et al., 2016]: mimicking the blackbox through the prediction scores

• [Maaten and Hinton, 2008; Simonyan et al., 2013; Yosinski et al., 2014; LeCun et al.,
2015; Mnih et al., 2015; Mahendran and Vedaldi, 2015]: visualizing the hidden units
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Interpretable Mimic Learning Framework [Che et al., 2016]

• Main ideas:
• Borrow the ideas from knowledge distillation [Hinton, et al., 2015]

and mimic learning [Ba, Caruana, 2014].
• Use Gradient Boosting Trees (GBTs) to mimic deep learning models.

• Training Pipeline:

• Benefits: Good performance, less overfitting, interpretations.
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Quantitative Evaluation
AUROC score of prediction on patients with acute hypoxemic respiratory failure.

AUROC score of 20 ICD-9 diagnosis category prediction tasks on MIMIC-III dataset.
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Model/Feature Interpretation
Partial dependency plot for mortality prediction on patients with acute hypoxemic
respiratory failure.
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• pH value in blood should stay in a normal range around
7.35-7.45.

• Our model predicts a higher mortality change when the
patient pH value below 7.325.

Most Useful Decision Trees for ventilator free days prediction.
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Useful features:

• Lung injury score

• Oxygenation index

• PF ratio change
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Black-Box Problem of Neural Networks

• Can we directly interpret neural networks?

• Existing methods to interpret neural networks do not cover the interpretation of statistical
interactions.
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Interaction Detection

• Statistical interactions: non-additive groupings of variables in function F (x).

• Example 1:

F1(x) = πx1x2
√
2x3 − sin−1(x4) + log(x3 + x5)− x9

x10

√
x7
x8
− x2x7

Interactions: {x1, x2, x3}, {x3, x5}, {x7, x8, x9, x10}, {x2, x7}
• Example 2:

F2(x) = log(x1) + log(x2)

Interactions: none.
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Main Contributions

• Our contributions:
• A novel interpretation of the weights of a deep neural network
• A state-of-the-art framework for detecting arbitrary-order interactions accurately and

efficiently
• A model reduction of deep neural networks via generalized additive models

⋯

𝑥1 𝑥2 𝑥𝑝⋯
(𝑥1, 𝑥2, … , 𝑥𝑝)

main effects feature interactions

𝑦
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Preliminaries

Feedforward Neural Network: consider a feedforward neural network with L hidden layers.
Let p` be the number of hidden units in the `-th layer.

• Input features as the 0-th layer and p0 = p is the number of input features.

• L weight matrices W(`) ∈p`×p`−1 and L bias vectors b(`) ∈p` .

• φ (·) is the activation function (non-linearity), wy ∈pL and by ∈ are the coefficients and
bias for the final output.

• Formulation:

h(0) = x, y = (wy)>h(L) + by, and h(`) = φ
(
W(`)h(`−1) + b(`)

)
, ∀` = 1, 2, . . . , L.
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Motivations

Key observation: any input features interacting with each other must follow strongly
weighted connections to a common hidden unit before the final output.
An example: F (x) has interaction {x1, x3}

!1

#!2

!3
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Theoretical Analysis

Lemma (Interactions at Common Hidden Units)

Consider a feedforward neural network with input feature xi, i ∈ [p], where y = ϕ
(
x1, . . . , xp

)
.

For any interaction I ⊂ [p] in ϕ (·), there exists a vertex vI in the associated directed graph
such that I is a subset of the ancestors of vI at the input layer (i.e., ` = 0).
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Neural Interaction Detector (NID)

Proposed Algorithm:

1 Train feedforward neural networks with sparsity regularization

2 Rank interactions by interpreting weights

3 Find cutoff on the ranking (if desired)
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Rank	Interactions	by	Interpreting	Weights

for	hidden	unit	𝑖

Interaction	Strength	Per	Hidden	Unit

Approximation	of	Hidden	Unit	Influence
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Theoretical Analysis

Lemma (Neural Network Lipschitz Estimation)

Let the activation function φ (·) be a 1-Lipschitz function. Then the output y is z
(`)
i -Lipschitz

with respect to h
(`)
i .

• Lipschitz constants provides upper bounds the gradient magnitudes of hidden units.

• The upper bound on the gradient magnitude approximates how important the variable
can be.
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A Simple Example

Definition of µ: Let β0 + β1x1 + β2x2 + β3x
2
1 + β4x

2
2 + β5x1x2 be the best quadratic

approximation, measured by square loss, to the ReLu function max{α1x1 + α2x2, 0} on
(x1, x2) ∈ (−1, 1)× (−1, 1), for the coefficient of interaction {x1, x2}, β5, we have:

|β5| =
3

4

(
1− min{α2

1, α
2
2}

5max{α2
1, α

2
2}

)
min{|α1| ,|α2|}

.
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Ranking	Pairwise	Interactions

𝑥( 𝑥* 𝑥+ 𝑥,
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Ranking	Higher-Order	Interactions
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Sample	Interaction	Ranking

Interactions Strengths

{1,2,3} 1.3421
{1,2,3,4}
{1,2}
{1,3} 0.2310
… …

0.8241
0.3415
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Theoretical Analysis

Theorem (Improving the ranking of higher-order interactions)

Let R be the set of interactions proposed by NID, let I ∈ R be a d-way interaction where
d ≥ 3, and let S be the set of subset (d− 1)-way interactions of I where |S| = d. Assume
that for any hidden unit j which proposed s ∈ S ∩R, I will also be proposed at the same
hidden unit, and ωj(I) > 1

dωj(s). Then, one of the following must be true: a) ∃s ∈ S ∩R
ranked lower than I, i.e., ω(I) > ω(s), or b) ∃s ∈ S where s /∈ R.
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Find	a	Cutoff	on	the	Ranking

Cutoff

• Use	a	generalized	additive	model	with	interactions	(MLP-Cutoff)
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Test	Suite	of	Data-Generating	Functions

Complex	functions	are	used	in	our	evaluation
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AUC	of	Pairwise	Interaction	Strengths

1 2 3

1Fisher	1925,	2Bien	et	al.	2013, 3Sorokina	et	al.	2008
*F6 plays	an	important	role	for	this	result	
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Higher-Order	Interaction	Detection	for	Synthetic	Data
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Pairwise	Heap-Maps	for	Real-World	Data

15/17

{1,2}:	longitude	and	latitude	

1Pace	et	al.	1997,	2Fanaee-T	et	al.	2014, 3Adam-Bourdarios	et	al.	2014,	4Frey	et	al.	1991		

1 2 3 4
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Pairwise	Heap-Maps	for	Real-World	Data

15/17

{4,7}:	hour	and	working	day	

1Pace	et	al.	1997,	2Fanaee-T	et	al.	2014, 3Adam-Bourdarios	et	al.	2014,	4Frey	et	al.	1991		

1 2 3 4
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Deciphering the Black Box
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USC-Melady Research Group

Michael Tsang, Dehua Cheng, and Yan Liu, Detecting Statistical Interactions from Neural
Network Weights, arXiv:1705.04977.
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Thank You!
Questions and Comments?
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