Neural Interaction Detector - Detecting High-order Interactions via Deep Neural Networks

Yan Liu

Associate Professor Computer Science Department University of Southern California

Director, Machine Learning Center (MASCLE)

Physics Informed Machine Learning

January 23, 2018

Machine learning and AI research can be Thought of as Building the Brain of the 4th Industrial and Revolutions

Where we are - Teaching Machines to See

Where we are - Teaching Machines to Talk

Next Step - Teaching Machines to Discover

random rewiring (q)

Next Step - Teaching Machines to Discover

Research Thrusts in Time Series Analysis

Yan Liu (USC)

Sponsors:

January 23, 2018 7 / 34

Research Thrusts in Network Analysis

Novel machine learning models for network analysis and inference:

- Network anomaly detection [SDM 2010; ICDM 2012; KDD 2014]
- Robust network inference [ICML 2015; NIPS 2017; WSDM 2017]
- Network analysis for Recommendation [ICML 2012]
- Network embedding via deep learning models [IJCAI workshop, 2107]

Sponsors:

NSF CyberSEES Project

Objectives: a marriage between deep learning approaches and physics based simulation models

Application: casual attribution of urban heat island from heterogeneous data collections Research problems

- Multi-rate multiresolution
- Heterogeneous data quality
- Interpretation of deep learning models

Collaborators

Deep Learning as Blackbox

How Deep Learning is Perceived by Students

 \sim

I am teaching a Deep Learning graduate course this Fall at CMU with over 300 MSc and PhD students enrolled.

Today, after our midterm, I received the following anonymous feedback: "Did I take the wrong exam? Does this exam cover too little machine learning stuff and focus too much on mathematics?"

I guess there is a common belief that Deep Learning is all about installing TensorFlow or PyTorch and training a gigantic convnet on multiple GPUs (2)

Importance of Explainable Artificial Intelligence - I

Importance of Explainable Artificial Intelligence - I

Importance of Explainable Artificial Intelligence - II

How can I trust any machine learning algorithm? [Ribeiro et al, 2016]

(a) Husky classified as wolf

(b) Explanation

Interpretable Model is Necessary

Interpretable predictive models are shown to result in faster adoptability of machine learning models.

- Simple and commonly use models
- Easy to interpret, mediocre performance

- Deep learning solutions
- Superior performance, hard to explain

Can we learn interpretable models with robust prediction performance?

Ongoing Work on Explainable Machine Learning Models

Direct Interpretation

- [Garson, 1991]: estimating feature importance directly from network weight connections
- [Hechtlinger, 2016]: computing output gradients with respect to input features
- [Itti et al., 1998; Mnih et al., 2014; Xu et al., 2015]: attention models

Indirect Interpretation

- [Provost et al., 1997]: sensitivity analysis of feature contributions to a neural network's output
- [Ribeiro et al., 2016]: local interpretability for black-box models
- [Che et al., 2016]: mimicking the blackbox through the prediction scores
- [Maaten and Hinton, 2008; Simonyan et al., 2013; Yosinski et al., 2014; LeCun et al., 2015; Mnih et al., 2015; Mahendran and Vedaldi, 2015]: visualizing the hidden units

MASCLE

Interpretable Mimic Learning Framework [Che et al., 2016]

- Main ideas:
 - Borrow the ideas from knowledge distillation [Hinton, et al., 2015] and mimic learning [Ba, Caruana, 2014].
 - Use Gradient Boosting Trees (GBTs) to mimic deep learning models.
- Training Pipeline:

• Benefits: Good performance, less overfitting, interpretations.

Quantitative Evaluation

AUROC score of prediction on patients with acute hypoxemic respiratory failure.

AUROC score of 20 ICD-9 diagnosis category prediction tasks on MIMIC-III dataset.

January 23, 2018 18 / 34

MASCLE

Model/Feature Interpretation

Partial dependency plot for mortality prediction on patients with acute hypoxemic respiratory failure.

- pH value in blood should stay in a normal range around 7.35-7.45.
- Our model predicts a higher mortality change when the patient pH value below 7.325.

Most Useful Decision Trees for ventilator free days prediction.

Useful features:

- Lung injury score
- Oxygenation index
- PF ratio change

Black-Box Problem of Neural Networks

- Can we directly interpret neural networks?
- Existing methods to interpret neural networks do not cover the interpretation of statistical interactions.

Interaction Detection

- Statistical interactions: non-additive groupings of variables in function $F(\mathbf{x})$.
- Example 1:

$$F_1(\mathbf{x}) = \frac{\pi^{x_1 x_2} \sqrt{2x_3} - \sin^{-1}(x_4) + \log(x_3 + x_5) - \frac{x_9}{x_{10}} \sqrt{\frac{x_7}{x_8}} - \frac{x_2 x_7}{x_8}$$

Interactions: $\{x_1, x_2, x_3\}$, $\{x_3, x_5\}$, $\{x_7, x_8, x_9, x_{10}\}$, $\{x_2, x_7\}$
• Example 2:

$$F_2(\mathbf{x}) = \log(x_1) + \log(x_2)$$

Interactions: none.

Main Contributions

- Our contributions:
 - A novel interpretation of the weights of a deep neural network
 - A state-of-the-art framework for detecting arbitrary-order interactions accurately and efficiently
 - A model reduction of deep neural networks via generalized additive models

Preliminaries

Feedforward Neural Network: consider a feedforward neural network with L hidden layers. Let p_{ℓ} be the number of hidden units in the ℓ -th layer.

- Input features as the 0-th layer and $p_0 = p$ is the number of input features.
- L weight matrices $\mathcal{W}^{(\ell)} \in \mathcal{P}_{\ell} \times \mathcal{P}_{\ell-1}$ and L bias vectors $\mathbf{b}^{(\ell)} \in \mathcal{P}_{\ell}$.
- $\phi(\cdot)$ is the activation function (non-linearity), $\mathbf{w}^y \in p_L$ and $b^y \in are$ the coefficients and bias for the final output.
- Formulation:

$$\mathbf{h}^{(0)} = \mathbf{x}, \quad y = (\mathbf{w}^y)^\top \mathbf{h}^{(L)} + b^y, \quad \text{ and } \mathbf{h}^{(\ell)} = \phi\left(\mathcal{W}^{(\ell)}\mathbf{h}^{(\ell-1)} + \mathbf{b}^{(\ell)}\right), \quad \forall \ell = 1, 2, \dots, L.$$

Motivations

Key observation: any input features interacting with each other must follow strongly weighted connections to a common hidden unit before the final output.

An example: $F(\mathbf{x})$ has interaction $\{x_1, x_3\}$

Lemma (Interactions at Common Hidden Units)

Consider a feedforward neural network with input feature $x_i, i \in [p]$, where $y = \varphi(x_1, \ldots, x_p)$. For any interaction $\mathcal{I} \subset [p]$ in $\varphi(\cdot)$, there exists a vertex $v_{\mathcal{I}}$ in the associated directed graph such that \mathcal{I} is a subset of the ancestors of $v_{\mathcal{I}}$ at the input layer (i.e., $\ell = 0$).

Neural Interaction Detector (NID)

Proposed Algorithm:

- 1 Train feedforward neural networks with sparsity regularization
- 2 Rank interactions by interpreting weights
- S Find cutoff on the ranking (if desired)

Interaction Strength Per Hidden Unit

$$\omega_i(\mathcal{I}) = z_i^{(1)} \mu\left(\left|\mathbf{W}_{i,\mathcal{I}}^{(1)}
ight|
ight)~~ ext{for hidden unit}~i$$

$$\mathbf{z}^{(1)} = \left|\mathbf{w}^{y}\right|^{\top} \left|\mathbf{W}^{(L)}\right| \cdot \left|\mathbf{W}^{(L-1)}\right| \cdots \left|\mathbf{W}^{(2)}\right|$$

Interaction Strength Per Hidden Unit

$$\omega_i(\mathcal{I}) = z_i^{(1)} \mu\left(\left|\mathbf{W}_{i,\mathcal{I}}^{(1)}
ight|
ight)~$$
 for hidden unit i

$$\mathbf{z}^{(1)} = \left|\mathbf{w}^{y}\right|^{\top} \left|\mathbf{W}^{(L)}\right| \cdot \left|\mathbf{W}^{(L-1)}\right| \cdots \left|\mathbf{W}^{(2)}\right|$$

Interaction Strength Per Hidden Unit

$$\omega_i(\mathcal{I}) = z_i^{(1)} \mu\left(\left|\mathbf{W}_{i,\mathcal{I}}^{(1)}
ight|
ight)~~ ext{for hidden unit}~i$$

$$\mathbf{z}^{(1)} = \left|\mathbf{w}^{y}\right|^{\top} \left|\mathbf{W}^{(L)}\right| \cdot \left|\mathbf{W}^{(L-1)}\right| \cdots \left|\mathbf{W}^{(2)}\right|$$

Theoretical Analysis

Lemma (Neural Network Lipschitz Estimation)

Let the activation function $\phi(\cdot)$ be a 1-Lipschitz function. Then the output y is $z_i^{(\ell)}$ -Lipschitz with respect to $h_i^{(\ell)}$.

- Lipschitz constants provides upper bounds the gradient magnitudes of hidden units.
- The upper bound on the gradient magnitude approximates how important the variable can be.

Interaction Strength Per Hidden Unit

$$\begin{split} \omega_i(\mathcal{I}) &= z_i^{(1)} \mu\left(\left|\mathbf{W}_{i,\mathcal{I}}^{(1)}\right|\right) \; \text{ for hidden unit } i \\ \mu\left(\cdot\right) &= \min\left(\cdot\right) \end{split}$$

$$\mathbf{z}^{(1)} = \left|\mathbf{w}^{y}\right|^{\top} \left|\mathbf{W}^{(L)}\right| \cdot \left|\mathbf{W}^{(L-1)}\right| \cdots \left|\mathbf{W}^{(2)}\right|$$

A Simple Example

Definition of μ : Let $\beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1^2 + \beta_4 x_2^2 + \beta_5 x_1 x_2$ be the best quadratic approximation, measured by square loss, to the ReLu function $\max\{\alpha_1 x_1 + \alpha_2 x_2, 0\}$ on $(x_1, x_2) \in (-1, 1) \times (-1, 1)$, for the coefficient of interaction $\{x_1, x_2\}$, β_5 , we have:

$$|\beta_5| = \frac{3}{4} \left(1 - \frac{\min\{\alpha_1^2, \alpha_2^2\}}{5 \max\{\alpha_1^2, \alpha_2^2\}} \right) \min\{|\alpha_1|, |\alpha_2|\}$$

 $|w_1| > |w_2| > |w_3| > |w_4|$

Sample Interaction Ranking

Interactions	Strengths		
{1 2 3}	1 2/21		
(1,2,3)	1.5421		
{1,2,3,4}	0.8241		
{1,2}	0.3415		
{1,3}	0.2310		

Theorem (Improving the ranking of higher-order interactions)

Let \mathcal{R} be the set of interactions proposed by NID, let $\mathcal{I} \in \mathcal{R}$ be a *d*-way interaction where $d \geq 3$, and let \mathcal{S} be the set of subset (d-1)-way interactions of \mathcal{I} where $|\mathcal{S}| = d$. Assume that for any hidden unit *j* which proposed $s \in \mathcal{S} \cap \mathcal{R}$, \mathcal{I} will also be proposed at the same hidden unit, and $\omega_j(\mathcal{I}) > \frac{1}{d}\omega_j(s)$. Then, one of the following must be true: a) $\exists s \in \mathcal{S} \cap \mathcal{R}$ ranked lower than \mathcal{I} , i.e., $\omega(\mathcal{I}) > \omega(s)$, or b) $\exists s \in \mathcal{S}$ where $s \notin \mathcal{R}$.

Find a Cutoff on the Ranking

• Use a generalized additive model with interactions (MLP-Cutoff)

$$c_{K}(\mathbf{x}) = \sum_{i=1}^{p} g_{i}(x_{i}) + \sum_{i=1}^{K} g'_{i}(\mathbf{x}_{\mathcal{I}})$$

$$g_{i}(\cdot): \text{ main effects}$$

$$g'_{i}(\cdot): \text{ interactions}$$

$$Cutoff$$

$$0 \quad 2 \quad 4 \quad 6 \quad 8$$

$$K$$

Test Suite of Data-Generating Functions

$F_1(\mathbf{x})$	$\pi^{x_1x_2}\sqrt{2x_3} - \sin^{-1}(x_4) + \log(x_3 + x_5) - \frac{x_9}{x_{10}}\sqrt{\frac{x_7}{x_8}} - x_2x_7$
$F_2(\mathbf{x})$	$\pi^{x_1x_2}\sqrt{2 x_3 } - \sin^{-1}(0.5x_4) + \log(x_3 + x_5 + 1) + \frac{x_9}{1 + x_{10} }\sqrt{\frac{x_7}{1 + x_8 }} - x_2x_7$
$F_3(\mathbf{x})$	$\exp x_1 - x_2 + x_2x_3 - x_3^{2 x_4 } + \log(x_4^2 + x_5^2 + x_7^2 + x_8^2) + x_9 + \frac{1}{1 + x_{10}^2}$
$F_4(\mathbf{x})$	$\exp x_1 - x_2 + x_2x_3 - x_3^{2 x_4 } + (x_1x_4)^2 + \log(x_4^2 + x_5^2 + x_7^2 + x_8^2) + x_9 + \frac{1}{1 + x_{10}^2}$
$F_5(\mathbf{x})$	$rac{1}{1+x_1^2+x_2^2+x_3^2}+\sqrt{\exp(x_4+x_5)}+ x_6+x_7 +x_8x_9x_{10}$
$F_6(\mathbf{x})$	$\exp\left(x_1x_2 +1\right) - \exp(x_3+x_4 +1) + \cos(x_5+x_6-x_8) + \sqrt{x_8^2 + x_9^2 + x_{10}^2}$
$F_7(\mathbf{x})$	$\left(\arctan(x_1) + \arctan(x_2)\right)^2 + \max(x_3x_4 + x_6, 0) - \frac{1}{1 + (x_4x_5x_6x_7x_8)^2} + \left(\frac{ x_7 }{1 + x_9 }\right)^5 + \sum_{i=1}^{10} x_i$
$F_8(\mathbf{x})$	$x_1x_2 + 2^{x_3 + x_5 + x_6} + 2^{x_3 + x_4 + x_5 + x_7} + \sin(x_7\sin(x_8 + x_9)) + \arccos(0.9x_{10})$
$F_9(\mathbf{x})$	$\tanh(x_1x_2+x_3x_4)\sqrt{ x_5 }+\exp(x_5+x_6)+\log\left((x_6x_7x_8)^2+1\right)+x_9x_{10}+\frac{1}{1+ x_{10} }$
$F_{10}({f x})$	$\sinh(x_1 + x_2) + \arccos(\tanh(x_3 + x_5 + x_7)) + \cos(x_4 + x_5) + \sec(x_7 x_9)$

Complex functions are used in our evaluation

AUC of Pairwise Interaction Strengths

	ANOVA ¹	HierLasso ²	AG ³	NID. MLP	NID. MLP-M
$F_1(\mathbf{x})$	0.992	1.00	1 ± 0.0	$0.970 \pm 9.2e{-3}$	$0.995 \pm 4.4e - 3$
$F_2(\mathbf{x})$	0.468	0.636	$0.88 \pm 1.4\mathrm{e}{-2}$	$0.79\pm3.1\mathrm{e}{-2}$	$0.85\pm3.9\mathrm{e}{-2}$
$F_3(\mathbf{x})$	0.657	0.556	1 ± 0.0	$0.999\pm2.0\mathrm{e}{-3}$	1 ± 0.0
$F_4(\mathbf{x})$	0.563	0.634	$0.999 \pm 1.4\mathrm{e}{-3}$	$0.85\pm6.7\mathrm{e}{-2}$	$0.996\pm4.7\mathrm{e}{-3}$
$F_5(\mathbf{x})$	0.544	0.625	$0.67\pm5.7\mathrm{e}{-2}$	1 ± 0.0	1 ± 0.0
$F_6(\mathbf{x})$	0.780	0.730	$0.64\pm1.4\mathrm{e}{-2}$	$0.98\pm6.7\mathrm{e}{-2}$	$0.70\pm4.8\mathrm{e}{-2}$
$F_7(\mathbf{x})$	0.726	0.571	$0.81\pm4.9\mathrm{e}{-2}$	$0.84\pm1.7\mathrm{e}{-2}$	$0.82\pm2.2\mathrm{e}{-2}$
$F_8(\mathbf{x})$	0.929	0.958	$0.937\pm1.4\mathrm{e}{-3}$	$0.989\pm4.4\mathrm{e}{-3}$	$0.989 \pm 4.5\mathrm{e}{-3}$
$F_9(\mathbf{x})$	0.783	0.681	$0.808\pm5.7\mathrm{e}{-3}$	$0.83\pm5.3\mathrm{e}{-2}$	$0.83\pm3.7\mathrm{e}{-2}$
$F_{10}(\mathbf{x})$	0.765	0.583	1 ± 0.0	$0.995 \pm 9.5 e{-3}$	$0.99\pm2.1\mathrm{e}{-2}$
average	0.721	0.698	$0.87 \pm 1.4 \mathrm{e}{-2}$	$0.92* \pm 2.3e - 2$	$0.92 \pm 1.8e - 2$

¹Fisher 1925, ²Bien et al. 2013, ³Sorokina et al. 2008

 $*F_6$ plays an important role for this result

Higher-Order Interaction Detection for Synthetic Data

$$\begin{array}{|c|c|c|c|c|c|c|}\hline F_1(\mathbf{x}) & \pi^{x_1x_2}\sqrt{2x_3} - \sin^{-1}(x_4) + \log(x_3 + x_5) - \frac{x_9}{x_{10}}\sqrt{\frac{x_7}{x_8}} - x_2x_7 \\\hline F_3(\mathbf{x}) & \exp|x_1 - x_2| + |x_2x_3| - x_3^{2|x_4|} + \log(x_4^2 + x_5^2 + x_7^2 + x_8^2) + x_9 + \frac{1}{1 + x_{10}^2} \\\hline F_5(\mathbf{x}) & \frac{1}{1 + x_1^2 + x_2^2 + x_3^2} + \sqrt{\exp(x_4 + x_5)} + |x_6 + x_7| + x_8x_9x_{10} \\\hline F_7(\mathbf{x}) & (\arctan(x_1) + \arctan(x_2))^2 + \max(x_3x_4 + x_6, 0) - \frac{1}{1 + (x_4x_5x_6x_7x_8)^2} + \left(\frac{|x_7|}{1 + |x_9|}\right)^5 + \sum_{i=1}^{10} x_i \\\hline \end{array}$$

Pairwise Heap-Maps for Real-World Data

{1,2}: longitude and latitude

¹Pace et al. 1997, ²Fanaee-T et al. 2014, ³Adam-Bourdarios et al. 2014, ⁴Frey et al. 1991

15/17

Pairwise Heap-Maps for Real-World Data

{4,7}: hour and working day

¹Pace et al. 1997, ²Fanaee-T et al. 2014, ³Adam-Bourdarios et al. 2014, ⁴Frey et al. 1991

15/17

Deciphering the Black Box

USC-Melady Research Group

Michael Tsang, Dehua Cheng, and Yan Liu, Detecting Statistical Interactions from Neural Mascle Network Weights, arXiv:1705.04977.

Yan Liu (USC)

Thank You! Questions and Comments?

References I

Che, Z., Purushotham, S., Khemani, R., and Liu, Y. (2016). Interpretable deep models for icu outcome prediction. In *AMIA Annual Symposium Proceedings*, volume 2016, page 371. American Medical Informatics Association.

Garson, G. D. (1991). Interpreting neural-network connection weights. AI Expert, 6(4):46-51.

Hechtlinger, Y. (2016). Interpretation of prediction models using the input gradient. arXiv preprint arXiv:1611.07634.

Itti, L., Koch, C., and Niebur, E. (1998). A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on pattern analysis and machine intelligence, 20(11):1254–1259.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature, 521(7553):436-444.

- Maaten, L. v. d. and Hinton, G. (2008). Visualizing data using t-sne. *Journal of Machine Learning Research*, 9(Nov):2579–2605.
- Mahendran, A. and Vedaldi, A. (2015). Understanding deep image representations by inverting them. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pages 5188–5196.
- Mnih, V., Heess, N., Graves, A., et al. (2014). Recurrent models of visual attention. In Advances in neural information processing systems, pages 2204–2212.
- Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-level control through deep reinforcement learning. *Nature*, 518(7540):529–533.
- Provost, F. J., Fawcett, T., et al. (1997). Analysis and visualization of classifier performance: Comparison under imprecise class and cost distributions. In *KDD*, volume 97, pages 43–48.

References II

- Ribeiro, M. T., Singh, S., and Guestrin, C. (2016). Why should i trust you?: Explaining the predictions of any classifier. In *Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, pages 1135–1144. ACM.
- Simonyan, K., Vedaldi, A., and Zisserman, A. (2013). Deep inside convolutional networks: Visualising image classification models and saliency maps. *arXiv preprint arXiv:1312.6034*.
- Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A. C., Salakhutdinov, R., Zemel, R. S., and Bengio, Y. (2015). Show, attend and tell: Neural image caption generation with visual attention. In *ICML*, volume 14, pages 77–81.
- Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. (2014). How transferable are features in deep neural networks? In *Advances in neural information processing systems*, pages 3320–3328.

