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Simple (but surprisingly rich) neuronal models → Stat. Phys. Analysis

More complex neural networks, realistic data → numerical experiments

 

(replica method)
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Learning as an optimization problem

Highly non-convex landscape, many sharp local minima, isolated global 
minima

Should be hopeless, yet efficient heuristics exist

 energy
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Large deviation analysis → hidden dense region (high local entropy)

 

energy

Hidden (eq. analysis ignores it)
Dense → robust → generalizes well
Accessible to simple algorithms
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High-density states can be targeted by explicitly designed algorithms

But some processes are attracted to them too. In particular:
1) Quantum annealing
2) Simple gradient on stochastic synapses

 energy



  

Motivation, in brief

● Deep learning models: impressive results (super-human in some 
cases), very versatile 

● Would benefit from: improved theoretical understanding, reduced 
resources usage, dedicated hardware

● Biological neurons: low-precision, quite noisy



  

Simplified neuronal models

● Simplest model neuron: perceptron (one layer,  discretized time — no 
dynamics, no Dale's principle...)
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Simplified neuronal models

● Simplest model neuron: perceptron (building block of DNNs)
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Simplified neuronal models

● Simplest model neuron: perceptron (building block of DNNs)

● Learning as an optimization problem: minimize misclassifications
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Simplified neuronal models

● Simplest model neuron: perceptron (building block of DNNs)

● Learning as an optimization problem: minimize misclassifications

● Random i.i.d. patterns, large N → stat. phys. tools → phase 
transitions (e.g. SAT/UNSAT)

?
inputs

output desired output



  

Equilibrium statistical physics of
neural networks

● Errors ~ energy → Gibbs measure → Stat. Phys. Tools

● SAT/UNSAT phase transition (there is a “critical capacity” αc)

Neural net factor graph
(interactions ~ patterns)

Variables
(synaptic weights)

Patterns
(inputs+des. outputs)

E
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=0 E
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Binary (±1) synapses, equilibrium results

● Good capacity: αc = 0.83

● But nasty optimization landscape: typical solutions are isolated, 
and immersed in exponentially many local minima

● Yet, simple efficient heuristics exists up to αmax ~ 0.75. They find   
non-isolated solutions, i.e. atypical

● Need to move away from equilibrium analysis

W. Krauth, M. Mézard, J. Phys. France, 1989
H. Huang, Y. Kabashima, Phys. Rev. E, 2014

A. Braunstein, R. Zecchina, PRL, 2006
C. Baldassi, A. Braunstein, et al, PNAS, 2007

C. Baldassi, J. Stat. Phys., 2009
C. Baldassi, A. Braunstein, J. Stat. Mech., 2015

space of configurations

energy landscape



  

Large deviation analysis: local entropy
● Idea: skew the statistical analysis towards non-isolated regions

● Given a configuration, we want to weigh it by how many solutions 
surround it — local entropy

C. Baldassi, A. Ingrosso, C. Lucibello, L. Saglietti, R. Zecchina, PRL, 2015

Gibbs distribution 
with a different 

energy



  

Large deviation analysis: Results Summary

● Ultra-dense regions exist at least up to some α ~ 0.77 (good 
agreement with heuristic solvers)

● Better generalization properties (quasi-bayesian) [note: dense 
regions are not planted, they are structural]

● Same phenomenology also in with arbitrary number of synaptic 
states

– capacity saturates fast with number of states → high-precision is 
not needed (with the right algorithms)

● Same phenomenology also in deeper networks with more realistic 
datasets

C. Baldassi, A. Ingrosso, C. Lucibello, L. Saglietti, R. Zecchina, PRL, 2015
C. Baldassi, F. Gerace, C. Lucibello, L. Saglietti, R. Zecchina, Phys. Rev. E, 2016



  

energy

dense region
Isolated optima
(much more numerous than 
depicted here) 



  

energy
local entropy

large d
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local entropy

intermediate d
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small d



  

energy
local entropy

large to small d = "focusing" or "scoping" process



  

Exploring loc.entropy by interacting replicas
● Assume that the parameter y is integer and transform the partition 

function:

C. Baldassi, C. Borgs, J. Chayes, A. Ingrosso, C. Lucibello, L. Saglietti, R. Zecchina, PNAS, 2016

Local free 
entropy

reference
(“center”) y replicas

interaction

Large 
deviation 
measure



  

Exploring loc.entropy by interacting replicas
● Assume that the parameter y is integer and transform the partition 

function: simple recipe to extend existing algorithms

C. Baldassi, C. Borgs, J. Chayes, A. Ingrosso, C. Lucibello, L. Saglietti, R. Zecchina, PNAS, 2016

reference

y replicas

interaction

original factor 
graph

We call this the 
Robust Ensemble 

(RE)



  

Replicated variants of existing algorithms

● Replicated Simulated Annealing → doesn't get stuck → exponential 
speed-up w.r.t. non-replicated version

● Replicated Belief Propagation → efficient solver + semi-analytical tool 
for studying dense states + link with reinforcement heuristic

● Replicated Stochastic Gradient Descent (SGD) → dramatic 
improvement in capacity and speed w.r.t. non-replicated SGD

● (All of these were tested on 2-layer networks: same scenario as the 
1-layer perceptron)

C. Baldassi, C. Borgs, J. Chayes, A. Ingrosso, C. Lucibello, L. Saglietti, R. Zecchina, PNAS, 2016



  

Deep neural networks

● Replicated SGD very deeply related to EASGD (Zhang et al. 2015) 
(11-layers, convolutional architecture, real-life images [ImageNet])

● Entropy-SGD (2016): use Langevin dynamics to estimate local 
entropy, with excellent results (convolutional networks and recurrent 
networks, realistic inputs)

● Parallel Local Entropy (Parle) (2017): state-of-the-art results on an 
array of tasks, but ~3x faster, distributed learning

● Theoretical and numerical evidence from other research groups: 
minima are not all the same, wide minima (dense states) generalize 
better

S. Zhang, A. Choromanska, Y. LeCun, NIPS 2015
P. Chaudhari, A. Choromanska, S. Soatto, Y. LeCun, C. Baldassi, C. Borgs, J. Chayes, L. Sagun, R. Zecchina, ICLR 2016

P. Chaudhari, C. Baldassi, R. Zecchina, S. Soatto, A. Talwalkar, A. Oberman (arXiv 1707.00424), SysML 2018



  

Quantum annealing

● Quantum annealing strategy: use quantum fluctuations (rather than 
thermal fluctuations) to overcome energetic barriers

– Classical energy function + quantum perturbation, slowly send the 
perturbation to zero

● So far: unclear if "true" QA really helps, compared to standard 
annealing, in any relevant concrete scenario

classical
part

transverse field
(send Γ to 0)



  

Suzuki-Trotter transformation

● Partition function transformation → "effective" replicated classical 
Hamiltonian (with infinite replicas, y→∞)

replicated
classical

part
interaction

Γ→0 ⟺ γ→∞ 

● Can be simulated with MCMC (finite y) → Quantum Simulated 
Annealing (QSA)



  

Quantum annealing vs Robust ensemble

● Effective Hamiltonian after Suzuki-Trotter transformation: very similar 
to the robust ensemble description...

original
factor graph

QA

RE

C. Baldassi, R. Zecchina, PNAS 2018 (in press, arXiv:1706.08470)



  

QSA on binary neural networks study
● Analytical calculations + numerical experiments + comparison with 

true QA in small instances

● Ends up in the dense states (exponential speed-up w.r.t. thermal 
annealing – a physical device would work in ~O(1)...)

● QA lowers kinetic energy by delocalizing → favors dense 
regions

C. Baldassi, R. Zecchina, PNAS 2018 (in press, arXiv:1706.08470)

(DWave-like)



  

Geometric structure is essential

C. Baldassi, R. Zecchina, PNAS 2018 (in press, arXiv:1706.08470)



  

Stochastic synapses (overview)

● Consider a network with binary stochastic synapses, each controlled 
by a single parameter (a magnetization)

● At each presentation of a pattern, the actual values of the synapses 
are extracted at random

● Maximum likelihood approach (gradient descent, simulated 
annealing...)

● Natural way to enforce robustness: the network must try to get in 
the middle of a dense region where almost all solutions are good.

● …and indeed it does → ends up in high local-entropy states

[This is no accident, the intuition is corroborated by a formal 
similarity with the RE setting]

C. Baldassi, F. Gerace, H.J. Kappen, C. Lucibello, L. Saglietti, E. Tartaglione, R. Zecchina, arXiv:1710.09825, 2017



  

Stochastic synapses

C. Baldassi, F. Gerace, H.J. Kappen, C. Lucibello, L. Saglietti, E. Tartaglione, R. Zecchina, arXiv:1710.09825, 2017

Standard:

Bayes:

Our approach:

This is the log-likelihood  of a stochastic network where for each pattern (x,y) we 
sample the synapses W.

More complicated then Standard, less then Bayes. We get some of the goodies of the 
Bayesian approach (encoding structural priors, implicit robustness) while in the end 
we solve the Standard problem.

It can be understood as a relaxation of the standard problem. 
Near the end of the training we have
 
Now we can use SGD to train binary networks! 

 



  

Stochastic binary perceptron

C. Baldassi, F. Gerace, H.J. Kappen, C. Lucibello, L. Saglietti, E. Tartaglione, R. Zecchina, arXiv:1710.09825, 2017

For large N the log-likelihood becomes

Smoothed-out landscape: we can do Gradient 
Descent on          [or any other simple algorithm, 
actually]

Eventually, we can get to a polarized configuration 
which is in the middle of a dense region (verified 
analytically and numerically).

 



  

Stochastic binary multi-layer networks

C. Baldassi, C.Borgs, J. Cheyes, F. Gerace, C. Lucibello, L. Saglietti, E. Tartaglione, R. Zecchina, in preparation, 2018

● The procedure can be applied to more complex architectures (e.g. 3 
or more hidden layers).

● However, in order to be efficient, we must introduce an approximation 
(uncorrelated neurons) which can be quite crude.

– In cases where we can keep the correlations under control, the 
results are indeed very good (work in progress…)

● Or we could estimate the loglikelihood by sampling (also WIP...)



  

Conclusions, future directions

● A wide family of stochastic processes is attracted to out-of-equilibrium 
states with peculiar (and useful) geometric properties in the space of 
configurations. Can we extend and generalize these results?

● Learning with low precision synapses can be made extremely simple, 
and the performances are very good: can we improve existing 
networks/design new neural hardware?

● Accessible states in other problems – by exploring the robust 
ensemble we can find dense regions as if they were typical

● Applications in inference?

● We want to address unsupervised learning (automatic feature 
extraction) as well [we have preliminary results, on hold due to time 
constraints...]
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