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I. Multiple Scattering Technique

The multiple scattering approach starts from the
well-known formula for the vacuum energy or
Casimir energy (for simplicity here we first restrict
attention to a massless scalar field)(τ is the
“infinite” time that the configuration exists)
[Schwinger, 1975]

E =
i

2τ
Tr ln G → i

2τ
Tr ln GG−1

0 ,

where G (G0) is the Green’s function,

(−∂2 + V )G = 1, +BC, −∂2G0 = 1.
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T -matrix

Now we define the T -matrix,

T = S − 1 = V (1 + G0V )−1.

If the potential has two disjoint parts,
V = V1 + V2 it is easy to derive the interaction
between the two bodies (potentials):

E12 = − i

2τ
Tr ln(1 − G0T1G0T2)

= − i

2τ
Tr ln(1 − V1G1V2G2),

where Gi = (1 + G0Vi)
−1G0, i = 1, 2.
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Exact Results–Weak Coupling

In weak coupling it is possible to derive the exact
(scalar) interaction between two potentials

2D :
E

Lz
= − 1

32π3

∫

(dr⊥)(dr′⊥)
V1(r⊥)V2(r

′
⊥)

|r − r′|2 ,

3D : E = − 1

64π3

∫

(dr)(dr′)
V1(r)V2(r

′)

|r− r′|3 .
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Exact Results for Finite Plates

Consider two plates of finite length L, offset by
an amount b, separated by a distance a:

V1(r⊥) = λ1δ(y)θ(x)θ(L − x),

V2(r
′
⊥) = λ2δ(y

′ − a)θ(x′ − b)θ(L + b − x′),

b

L

L

a
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Exact Results for Finite Plates (cont.)

This gives an explicit result for the energy
between the plate

E

Lz
= −λ1λ2

32π3
[−2g(b/a) + g((L − b)/a) + g((L + b)/a)] ,

where

g(x) = x tan−1 x−1

2
ln(1+x2) = −Re(1+ix) ln(1+ix).

We can consider arbitrary lengths and orienta-

tions, in 3 dimensions, for the plates. [J. Wagner

et al.]
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Tilted plates

L2

L1

d a

ϕ

Explicit interaction energies can be given in
terms of Ti2, inverse tangent integral. For fixed
CM distance from the lower plate D, for L1 → L,
L2 → ∞, d → −∞, and D > L

2 , the equilibrium
position of the upper plate is at φ = π/2.
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Rectangular Parallel Plates

a

dy

dx

As a → 0,

F

A
= − λ1λ2

32π2a2
(1 + c1a + c2a

2 + . . . )
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Correction to Lifshitz formula

If upper plate is completely above lower plate,
c1 = 0.

If plates are of the same size and aligned,

c1 = −1

π

Perimeter
Area

.
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Coaxial disks

R2

R1

a

If R1 < R2, c1 = 0.

If R1 = R2, c1 = − 1
π

Perimeter
Area .
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Salient Features–two thin plates

Two plates of finite length experience a lateral
force so that they wish to align in the position
of maximum symmetry.

In this symmetric configuration, there is a
torque about the CM of a single plate so that
it tends to seek perpendicular orientation with
respect to the other plate.

First correction to Lifshitz formula is
geometrical.
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Relevance to Casimir Pistol

L

d
a

S. A. Fulling, L. Kaplan, K. Kirsten, Z. H. Liu, and

K. A. Milton, arXiv:0806.2468 [hep-th], J. Phys. A:

Math. Theor. 42, 155402 (2009).
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Summing van der Waals forces

The (retarded dispersion) van der Waals
potential between polarizable molecules is given
by

V = −23

4π

α1α2

r7
, α =

ε − 1

4πN
.

This allows us to consider in the same vein (elec-

tromagnetic) interaction between distinct dilute di-

electric bodies of arbitrary shape.
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Derivation of vdW interaction

This vdW potential may be directly derived from

W = − i

2
Tr lnΓΓ

−1
0 ≈ − i

2
Tr V1Γ0V2Γ0,

where V = ǫ − 1 and

Γ0 = ∇ × ∇ × 1
e−|ζ||r−r

′|

4π|r − r′| − 1

= (∇∇ − 1ζ2)G0(r − r
′).
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II. Interaction between ε, µ bodies

Consider material bodies characterized by a
permittivity ε(r) and a permeability µ(r), so we
have corresponding electric and magnetic
potentials

Ve(r) = ε(r) − 1, Vm(r) = µ(r) − 1.

Then the trace-log is (Φ0 = −1
ζ∇ × Γ0)

Tr lnΓΓ
−1
0 = −Tr ln(1 − Γ0Ve) − Tr ln(1 − Γ0Vm)

−Tr ln(1 + Φ0TeΦ0Tm),

Te,m = Ve,m(1 − Γ0Ve,m)−1.
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Factorization

If we have disjoint electric bodies, the interaction
term separates out:

Tr ln (1 − Γ0(V1 + V2)) = −Tr ln(1 − Γ0T1)

−Tr ln(1 − Γ0T2) − Tr ln(1 − Γ0T1Γ0T2),

so only the latter term contributes to the
interaction energy,

Eint =
i

2
Tr ln(1 − Γ0T1Γ0T2).
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ε-µ Lifshitz force

The same is true if one body is electric and the
other magnetic,

Eint = − i

2
Tr ln(1 + Φ0T

e
1Φ0T

m
2 ).

Using this, it is easy to show that the Lifshitz
energy between a parallel dielectric and
diamagnetic slabs is

Eεµ =
1

16π3

∫

dζ

∫

d2k

[

ln
(

1 − r1r
′
2e

−2κa
)

+ ln
(

1 − r1r
′
2e

−2κa
)

]
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Repulsive Casimir force

where

ri =
κ − κi

κ + κi
, r′i =

κ − κ′
i

κ + κ′
i

,

with κ2 = k2 + ζ2, κi = k2 + εζ2, κ′
i = κi/εi. This

means in the perfect reflecting limit, ε → ∞,
µ → ∞,

EBoyer = +
7

8

π2

720a3
,

we get Boyer’s repulsive result.
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III. Dilute dielectrics

We now give some exact results for dilute
dielectrics, |ε − 1| ≪ 1. For example, consider

ε1

ε2

a

z
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Force between slab/infinite plate

If the cross sectional area of the finite slab is A,
the force between the slabs is

F

A
= − 23

640π2

1

a4
(ε1 − 1)(ε2 − 1),

the Lifshitz formula for infinite (dilute) slabs.

Note that there is no correction due to the finite

area of the slab.
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Force between sphere and plate

a

R

ε2

ε1

z

E = − 23

640π2
(ε1 − 1)(ε2 − 1)

4πa3/3

R4

1

(1 − a2/R2)2
,
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— comparison with PFA

which agrees with the PFA in the short
separation limit, R − a = δ ≪ a:

FPFA = 2πaE‖(δ) = − 23

640π2
(ε1 − 1)(ε2 − 1)

2πa

3δ3
,

with an exact correction, intermediate between

that for scalar 1/2(Dirichlet+Neumann) and elec-

tromagnetic perfectly-conducting boundaries.
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Energy between slab and plate

ε1

ε2

Z

θ

b

a
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Torque between slab and plate

Generically, the shorter side wants to align with

the plate, which is obvious geometrically, since

that (for fixed center of mass position) minimizes

the energy. However, if the slab has square cross

section, the equilibrium position occurs when a

corner is closest to the plate, also obvious geo-

metrically. But if the two sides are close enough

in length, a nontrivial equilibrium position between

these extremes can occur.
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Nontrivial equilibria

1.0 1.5 2.0 2.5 3.0 3.5 4.0
0

������
Π

16

���
Π

8

�������
3 Π

16

���
Π

4

Z�D

Θ
eq

New Frontiers in Casimir Force Control, Santa Fe, September 29, 2009 – p.25/53



Stable equilibria

The stable equilibrium angle of a slab above an
infinite plate for given b/a ratios 0.95, 0.9, and
0.7, respectively given by solid, dashed, and
dot-dashed lines. For large enough separation,
the shorter side wants to face the plate, but for

Z < Z0 =
a

2

√

2a2 + 5b2 +
√

9a4 + 20a2b2 + 20b4

5 (a2 − b2)

the equilibrium angle increases, until finally at

Z = D =
√

a2 + b2/2 the slab touches the plate

at an angle θ = arctan b/a.
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Interaction between‖ cylinders

E

L
= − 23

60π
(ε1 − 1)(ε2 − 1)

a2b2

R6

×
1 − 1

2

(

a2+b2

R2

)

− 1
2

(

a2−b2

R2

)2

[(

1 −
(

a+b
R

)2
)(

1 −
(

a−b
R

)2
)]5/2

.
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Eccentric interior cylinder

This result can be analytically continued to the
case when one dielectric cylinder is entirely
inside a hollowed-out cylinder within an infinite
dielectric medium.

R

b

a

ε2

ε1
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Interaction between spheres

E = − 23

1920π

(ε1 − 1)(ε2 − 1)

R

{

ln

(

1 −
(

a−b
R

)2

1 −
(

a+b
R

)2

)

+
4ab

R2

a6−a4b2−a2b4+b6

R6 − 3a4−14a2b2+3b4

R4 + 3a2+b2

R2 − 1
[(

1 −
(

a−b
R

)2
)(

1 −
(

a+b
R

)2
)]2

}
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PFA and sphere-plate

This expression, which is rather ugly, may be
verified to yield the proximity force theorem:

E → U = − 23

640π

a(R − a)

Rδ2
, δ = R− a− b ≪ a, b.

It also, in the limit b → ∞, R → ∞ with R− b = Z

held fixed, reduces to the result for the interaction

of a sphere with an infinite plate.
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IV. Exact temperature results

The scalar Casimir energy between two weak
nonoverlapping potentials V1(r) and V2(r) at
temperature T is

ET = − T

32π2

∫

(dr)(dr′)V1(r)V2(r
′)

coth 2πT |r − r
′|

|r − r′|2 .
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Exact PFA

The energy between a semitransparent plane
and an arbitrarily curved nonintersecting
semitransparent surface:

ET = −λ1λ2T

16π

∫

dS

∫

2πTz(S)

dx
coth x

x
,

where the area integral is over the curved
surface. This is precisely what one means by the
PFA:

EPFA =

∫

dSE‖(z(S)),

as proved by Decca et al.
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Interaction between ST spheres

ET = −λ1λ2

16π

ab

R

{

ln
1 − (a − b)2/R2

1 − (a + b)2/R2

+ f(2πT (R + a + b)) + f(2πT (R − a − b))

− f(2πT (R − a + b)) − f(2πT (R + a − b))

}

,

where f is obtained from

y
d2

dy2
f(y) = coth y − 1

y
, f(0) = f ′(0) = 0.
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Numerical results

0.1 0.2 0.3 0.4

0.0

0.2

0.4

0.6

RT

e

a = b = R/4. Exact, high T , and truncated series

expansion.
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V. Noncontact gears

a

y0 d = 2π
k0

h1

h2
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Perturbation theory

Here we compute the lateral force between the
offset corrugated plates. The Dirichlet and
electromagnetic cases were previously
considered by Kardar and Emig, to second order
in corrugation amplitudes. We have carried out
the calculations to fourth order. In weak coupling
we can calculate to all orders, and verify that
fourth order is very accurate, provided k0h ≪ 1.

F =
FLat

|F (0)
Cas|(h1h2/a2)k0a sin(k0y)
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Weak coupling limit

0.5 1.0 1.5 2.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

F [∞,∞]
W

k0a

k0y0 =
π
4

k0h = 0.3
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Concentric corrugated cylinders

θ0

a
a1

a2
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Casimir torque per unit area

For corrugations given by δ-function potentials
with sinusoidal amplitudes:

h1(θ) = h1 sin ν(θ + θ0),

h2(θ) = h2 sin νθ

the torque to lowest order in the corrugations in
strong coupling (Dirichlet limit)
(α = (a2 − a1)/(a2 + a1))

τ (2)D

2πRLz
= ν sin νθ0

π2

240a3

h1

a

h2

a
B(2)D

ν (α).
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Dirichlet limit of cylindrical gears

2 4 6 8 10

0.2

0.4

0.6

0.8

1.0

B
(2)D
ν ( t0

2ν
)

t0

ν = 1, 2, 3, 4

A similar result can be found for weak coupling,

which, again, has a closed form.
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Corrugated Dielectric Slabs

ǫA ǫB

d = 2π
k0

y0

a
h1 h2

d1
d2

2nd and 4th order results should appear soon.
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VI. Multilayered surfaces

0 d Λ 2Λ 3Λ 4Λ 5Λ 6Λ
x

VHxL

V0
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Green’s function

To the right of this array of potentials, the
reduced Green’s function has the form, in terms
the reflection coefficient R for the array:

g(x, x′) =
1

2κ

(

e−κ|x−x′| + Reκ(x+x′)
)

.

(We can actually find the Green’s function
everywhere, for any piecewise continuous
potential. This will be described in detail in
forthcoming papers by Jef Wagner.)
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Reflection coefficient

The array reflection coeffient may be readily
expressed in terms of the reflection and
transmission coefficients for a single potential:

R = R + Te−κdRe−κd(1 − Re−2κdR)−1,

where d is the distance between the potentials,
the result of summing multiple reflections, →

R =
1

2R

[

e2κd + R2 − T 2

−
√

(e2κd − R2 − T 2)
2 − 4R2T 2

]

.
New Frontiers in Casimir Force Control, Santa Fe, September 29, 2009 – p.44/53



Dielectric slabs

If the potentials consist of dielectric slabs, with
dielectric constant ε and thickness a, the TE
reflection and transmission coefficients for a
single slab are (κ′ =

√

εζ2 + k2)

RTE =
e2κ′a − 1

(

1+κ′/κ
1−κ′/κ

)

e2κ′a −
(

1−κ′/κ
1+κ′/κ

) ,

TTE =
4(κ′/κ)eκ′a

(1 + κ′/κ)2e2κ′a − (1 − κ′/κ)2
.

TM: except in the exponents, κ′ → κ′/ε.
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CP Force

Consider an atom, of polarizability α(ω), a
distance Z to the left of the array. The
Casimir-Polder energy is

E = −
∫

dζ

∫

d2k

(2π)2
α(iζ)gkk(Z,Z),

where apart from an irrelevant constant the trace
is

gkk(Z,Z) → 1

2κ

[

−ζ2RTE + (ζ2 + 2k2)RTM
]

e−2κ|Z|.
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Numerical Results (ε = 2)

For example, in the static limit, where we
disregard the frequency dependence of the
polarizability,

E = −α(0)

2π

1

Z4
F (a/Z, d/Z).

This is compared with the single slab result:

0.2 0.4 0.6 0.8 1.0
a�Z=d�Z

0.05

0.10

0.15

F
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Z → ∞ limit ( ε = 2)

2 4 6 8 10
d�a

0.10

0.15

F

When d/a → 0 we recover the bulk limit.
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VII. Annular pistons

The multiple scattering approach allows us to
calculate the torque between annular pistons:

v1(θ)

v2(θ)

α

We use multiple scattering in the angular coor-

dinates, and an eigenvalue condition in the ra-

dial coordinates—equally well solvable with radial

Green’s functions, but generalizable.New Frontiers in Casimir Force Control, Santa Fe, September 29, 2009 – p.49/53



Energy for annular Casimir piston

Using the argument principle to determine the
angular eigenvalues, we get the following
expression for the energy for an annular Casimir
piston: E =
∫ ∞

0

κdκ

8π2i

∫

γ

dη
∂

∂η
ln [Kiη(κa)Liη(κb) − Liη(κa)Kiη(κb)]

× ln

(

1 − λ1λ2 cosh2 η(π − α)/ cosh2 ηπ

(2η tanh ηπ + λ1) (2η tanh ηπ + λ2)

)

.
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Energy of Annular Piston

0 1 2 3 4 5 6
-0.0010

-0.0008
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Hyperbolæ

Hyperbolic cylinder above plane:

Hyperbola of Revolution:
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Conclusions

Weak coupling results are laboratory for
testing PFA.

We have general results for the Green’s
functions for arbitrary piecewise continuous
potentials in separable coordinates.

From these we can calculate not only CP
forces, but Casimir energies and torques for
many geometries, including annular pistons,
and forces between hyperbolic surfaces.

New results for the electromagnetic
non-contact gears, both for conductors and
dielectrics, are in progress.New Frontiers in Casimir Force Control, Santa Fe, September 29, 2009 – p.53/53
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