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Abstract

We propose a method to probe dispersive atom-surface in-
teractions by measuring via two-photon Bragg spectroscopy
the dynamic structure factor of a Bose-Einstein condensate
above corrugated surfaces. This method takes advantage of
the condensate coherence to reveal the spatial Fourier com-
ponents of the lateral Casimir-Polder interaction energy.

Casimir atom-surface interaction

Consider a ground-state atom at position RA = (xA, yA, zA) in front of
a corrugated surface (with surface profile h(x, y) measured with respect
to the plane z = 0 (see figure). If

h(x) =
∑

j
hj cos(jkcx), (1)

then Casimir atom-surface interaction can be written as:

U(x, y, z) = UN (z) + UL(x, z), (2)

where first order approximation in h yields:

U (1)
L (xA, zA) =

∞
∑

j=0
hj cos(jkcxA)g(jkc, zA). (3)

The response function g(k, z) can be evaluated for a perfect conductor
[1]:

gperf
CP (k, z) = −

3h̄cα(0)
8π2ε0z5e

−Z(1 + Z + 16Z2/45 + Z3/45), (4)

where Z = kz. The lateral term acting on a BEC is weak periodic
potential.

Casimir-modified BEC energy spectrum

Consider an elongated BEC tightly confined
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We describe it via Gross-Pitaevskii equation

ih̄∂tϕ = −(h̄2/2m)∇2ϕ + [UN (z) + UL(x, z)]ϕ
+(m/2)(ω2

rr
2 + ω2

xx
2)ϕ + g|ϕ|2ϕ, (5)

We consider a strong trapping potential verifying

µ − h̄ωr � 8h̄ωr. (6)

In this situation the order parameter dynamics is reduced from

ϕ =
∑

n
fn(r)φn(x, t) (7)

into f0(r)φ0(x, t). The 1D problem has

Veff(x) = h̄ωr + UN (zcm) + UL(x, zcm) (8)

and
geff = g/2πσ2 (9)

Thus the excitation spectrum of the quasi 1D BEC near a corrugated
surface will be split into (Bloch-) bands.

To solve the problem we use TF approximation for the ground state
and find linearized equations for the perturbations, namely:

φ(x, t) = e−iµt
h̄ [φTF(x) + δφ(x, t)], (10)

where δφ(x, t) is a small disturbance and

φTF(x) = {[µ̃ − UL(x, zcm)]/geff}
1/2. (11)

Perturbations can be expanded in plane waves, δφ(x, t) = u(x)e−iEt
h̄ +

v(x)eiEt
h̄ where E should be determined from

Eu = −
h̄2

2m
d2u
dx2 + (µ̃ − UL(x, zcm))(u + v∗),

−Ev = −
h̄2

2m
d2v
dx2 + (µ̃ − UL(x, zcm))(u∗ + v). (12)

The lateral potential UL is weak, so we can treat it perturbatively:

E(q) = E(0)(q) + E(1)(q) + . . . . (13)

Where E(0)(q) =
√

(h̄2q2/2m)(h̄2q2/2m + 2µ̃). Solving this coupled
problem yields first order gaps

∆Eqn = |UL,nkc
| × F (qn)

F (q) = Tq/E
(0)
q (14)

where Tq is the free kinetic energy Tq = h̄2q2/2m and qn = nkc/2.
The spectrum and the suppression factor are:

E−(q)

qq1 = kc/2

F (q1)|UL,kc|

E(q)

q/kµ̃

F
(q

)
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Bragg spectroscopy of the Casimir potential

The rate of momentum transferred to the BEC reads [2]:

dPX
dt

= −mω2
xX +

∑

n,i
UL,nkc

(nkc)〈sin(nkcxi)〉 +

+
Nh̄qV 2

B
2

∫

dω′ [

S(q, ω′) − S(−q,−ω′)
]

×
sin([ω − ω′]t)

ω − ω′ . (15)

For large times it becomes proportional to the dynamic structure factor,
namely

S±(q, ω) ∝
[

∂E±(x, q)
∂x

∣

∣

∣

x∗

]−1
, (16)

where each branch S±(q, ω) is associated with one energy branch
through the relation h̄ω = E±(x∗, q). This last equation determines
implicitly x∗ = x∗(ω) to be used in equation (16) together with the
local spectrum, which is defined by

E±(x, q) = E(0)(x, q) ±
Tq

2E(0)(x, q)
UL,nkc

,

E(0)(x, q) =

√

√

√

√T 2
q + 2Tqµ̃

[

1 −
(

2x
L

)2
]

, (17)

In the following figure we plot the rate of momentum transferred for a
particular set of parameters.
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Numerical estimations

Let us now evaluate the Casimir atom-surface lateral potential and the
corresponding energy gaps. We choose a corrugation wavelength of
λc = 2π/kc = 9.75µm and corrugation amplitude h = 1µm separated
by zcm = 3µm from a cigar-shaped 87Rb condensate with N = 104

atoms. We assume that the BEC is trapped in an axially symmetric
potential with trapping frequencies ωx = 2π × 0.83 Hz and ωr =
2π× 2.7kHz. For this trapping frequency the radius of the BEC is σ =
0.2µm. The typical size of the condensate and the chemical potential
can be computed to be:

l/2 = (3geffN/2mω2
x)1/3 = 408 µm (18)

and
µ̃ = (mω2

x/8)1/3(3geffN/2)2/3 = h̄3.1kHz. (19)

The relevant kinetic energy is Tq1=kc/2 = h̄38Hz � µ̃. The typical
Bogoliubov energy is EB(q1) = h̄485Hz, and the suppression factor is
F (q1) = 0.08. The lateral Casimir-Polder potential (perfect conduc-
tor): U (1)

L,kc
= hgperf

CP (kc, zcm), is approximately h̄ 1.4Hz. This gives
a signal of F (q1) × 1.4 Hz = 0.1 Hz. This high sensitivities have
not been experimentally achieved yet. Other case can be studied, scal-
ing the parameters given before to zcm = 0.7µm, λc = 4µm, and
h = 50nm, results in a gap of 25Hz centered at E = 1.2kHz. Although
this energy range has been experimentally demonstrated [3], the mini-
mum distance of a BEC to the surface at present is limited to 2µm.
Thermal effects are not important except for the coherence length of
the BEC in the 1D configuration, yielding an upper bound on the tem-
perature of the thermal cloud around the condensate, TBEC. It can
be shown [4] that the typical decay length of the coherence is given by
2n1h̄2/kBTBECm, where n1 is the one-dimensional density. Using the
above parameters one finds that the temperature of the BEC should
be on the order of the nK to preserve the axial coherence up to scales
on the order of the size of the sample.

Conclusions

Non-trivial geometry effects of the quantum vacuum, such as the
lateral Casimir-Polder atom-surface interaction, modify the energy
spectrum of a BEC in close proximity to a corrugated surface. The
qualitative differences in the lowest energy (phonon-like) band were
characterized in this context and a possible experimental set up for
measuring the effect was discussed. As we have shown, using Bragg
spectroscopy to measure this effect seems challenging with present day
technology but could become feasible in the near future, opening a
new window on the physics of the interaction between surfaces and
coherent matter.
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