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Abstract

We consider the interaction energy due to electromagnetic field fluctuations in various infinitely long cylindrical systems. The structures of interest are a single cylindrical layer with a finite thickness, N
concentric infinitely thin shells, and two parallel full cylinders. In all cases, the mode summation method is applied to calculate the zero‐point energy. The derived analytical expressions are used to investigate the
energy dependence on the cylindrical radial curvature, size of the system, and the dielectric response properties of the involved objects and the medium. Of particular interest is the case of two parallel cylinders,
for which we show that the interaction can be changed from attractive to repulsive by a suitable choice of the material composition of the cylinders and the environment. Our studies can serve as a test ground
for future, more advanced theories of long ranged interactions in cylindrical systems. The presented results can also be viewed as a model of interactions due electromagnetic field fluctuations between tubular
formations, such as nanotubes and nanowires.

Casimir Effect ‐ Nanostructures

‐ the eigenfrequencies of the system;

Mode Summation Method
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Zero‐Point Energy of N concentric shells
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•N concentric infinitely long, infinitely thin, perfectly
conducting cylindrical shells in an infinite medium.

CE ‐ zero‐point Casimir energy;

‐ the eigenfrequencies with no boundaries present;

•Casimir force originates from vacuum fluctuations of the
electromagnetic field and is a long‐range dispersion force.

•Casimir force couples electrically neutral objects with no
permanent electric and/or magnetic moments.

•Friction, adhesion, and wear are directly related to Casimir
forces and become dominant at the nanoscale.
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Interaction energy per unit length for the case of N=3 shells: (a) as a function of the
inner radius R1; (b) as a function of the radius of the second shell R2; and (c) as a
function of separation between the two outer shells.

Here and121 / RR=α 232 / RR=α

‐ quantum numbers for cylindrical geometry.

)(, xf TMTE
n ‐ dispersion relation for the transverse electric and     

magnetic modes.

•Stability of carbon nanotube structures due to Casimir
forces: bundles, ropes, multiwall tubes.

•Carbon nanotube applications due to Casimir force: nano‐
oscillator, rotor, energy storage, sensors, drug delivery.
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Zero‐Point Energy of a Cylindrical Layer

•Infinitely long cylindrical layer of finite thickness, with
constant dielectric and magnetic properties imbedded
in an infinite medium with constant properties .

•Constant speed of light approximation:
(dielectric‐diamagnetic system)

( )με,
( )mm με ,

2−== cmm μεεμ

-0.05

0.00

 

0.0

 
Zero‐Point Energy of two solid parallel cylinders

•Two infinitely long solid parallel cylinders, with constant
dielectric and magnetic properties and( )11,με ( )22,με

Cylindrical Structures 

Cylindrical layer of finite thickness

2R Concentric metallic cylindrical 

1 5 9 13 17 21

-0.20

-0.15

-0.10

(b)

  

α=2
 α=2.5
 α=3
 α=4
 α=5
 α=6
 α=8
 α=11

R1 (nm)
1 3 5 7 9

-0.3

-0.2

-0.1

(a)

 

E C
/h

cξ
2

α = R2/R1

Interaction energy per unit length for the cylindrical dielectric layer as
a function of (a) – the ratio of the outer and inner radii R2/R1, (b) –
the inner radius R1.

g p p
imbedded in an infinite medium with properties .

•Constant speed of light approximation:
(dielectric‐diamagnetic system)
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Dimensionless interaction energy as a function of the a) dielectric function of the
medium, and b) dielectric function of one cylinder. is defined as . The
cylinders have equal radii, and center‐to‐center separation is .
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•Successful in removing divergences for all models and obtained finite
results for the zero‐point energy.

• Casimir energy as a function of curvature, distance separation and
dielectric properties.

•Repulsive interaction for two solid parallel cylinders can be achieved
for specific choices of the dielectric constants‐

Models of different carbon 
nanotube systems
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