Curvature and spatial organization in biological membranes

Raghuveer Parthasarathy

Department of Physics / Materials Science Institute

The University of Oregon

See: R. Parthasarathy and Jay T. Groves, Soft Matter 3, 24-33 (2007)

membrane properties

Cellular membranes: Active participants in cell functions

- Parthasarathy. r Parthasarathy, 2007 Ra Raghuv er Parthasarathy,membrane Rag proteins eer Palthasarathy,(3-60 nm) Rag thasarathy, 2007 rathy, 2007 Se Dia a lipid bilayer 5 nm) asarat hv. cell interior hasarath June 04
- Physical properties → biological consequences
 - 2D fluidity
- Spatial heterogeneity
- Curvature

membrane bending energetics

Raghuveer Parthanarathy, 2007

principle curvatures

1/r₁, c₂ = 1/r₂

Bending Energy (per unit Area):

 $\mathbf{E}_{c} = (1/2) \mathbf{k}_{c} (\mathbf{c}_{1} + \mathbf{c}_{2} - 2\mathbf{c}_{0})^{2} + \mathbf{k}_{G} \mathbf{c}_{1} \mathbf{c}_{2}$

spontaneous curvature: c₀

bending modulus: $\mathbf{k}_{c'}$ Gaussian modulus: \mathbf{k}_{G}

membrane bending energetics

- - Difficult, imprecise measurements: micropipette aspiration, observation of thermal fluctuations
 - (New methods: driven fluctuations?)

Even more poorly characterized.

k_G ?≈ -0.8 k_c – Siegel & Kozlov, *Biophys. J.*, 2004, 87, 366-374.

curvature: short length scales

Curvature at short length scales

• a variety of mechanisms

lipid bilayer

lipid, protein shapes are important

e.g. curved protein

qualitatively (not quantitatively) understood

er Parthasar

auveer Parthasarathy, 200

At large length scales, still less is known...

2007

R. Parthasarathy and Jay T. Groves, Soft Matter 3, 24-33 (2007) & Refs. therein

curvature at large length scales

At large length scales, still less is known about couplings between composition, curvature

Collective properties – different responses to curvature?

Recent experiments: Yes.

curvature and phase separation

Curvature and Phase Separation in Lipid Membranes

membrane microdomains

Cellular membranes are spatially heterogeneous in composition – membrane microdomains:

M. Edidin, Nat. Rev. Mol. Cell Biol. 4, 414-418 (2003)

See refs cited: R. Parthasarathy and Jay T. Groves, Soft Matter 3, 24-33 (2007).

phase separated domains

L_o phase

L_d phase

Cholesterol-dependent phase separation:

S.L. Veatch & S.L. Keller, *Phys. Rev. Lett.* 89, 268101 (2002)

e.g. Ternary mixtures: Saturated lipids (DPPC), unsaturated lipids (DOPC), cholesterol

 \rightarrow Liquid Ordered (L_o) and Liquid Disordered (L_d) phases

phase separation \rightarrow curvature

Domains in giant vesicles (Webb¹, Schwille², & others)

 \rightarrow "Bulging," differential curvature

Two mechanisms:

- differential rigidity
- line tension (relevant?)

Bar = 5 μm; from [1]

R. Parthasarathy, 2007 Line tension (alone) \rightarrow bulging

[1] T. Baumgart, S. T. Hess and W. W. Webb, *Nature*, 2003, 425, 821-824.
[2] K. Bacia, P. Schwille and T. Kurzchalia, *PNAS*, 2005, 102, 3272-3277.

phase separation \rightarrow curvature

Domains in giant vesicles (Webb¹, Schwille², & others) \rightarrow

"Bulging," differential curvature

Bar = 5 μm; from [1]

Strange sterol dependence [2]

<u>5 μ</u>m

T. Baumgart, S. T. Hess and W. W. Webb, *Nature*, 2003, 425, 821-824.
 K. Bacia, P. Schwille and T. Kurzchalia, *PNAS*, 2005, 102, 3272-3277.
 S. Rozovsky, Y. Kaizuka and J. T. Groves, *JACS.*, 2005, 127, 36-37.

curvature \rightarrow phase separation

Converse: Can curvature control domain organization?!

How is phase separation spatially organized?

Quantitative experiments linking curvature and chemical composition require:

Membranes with well-understood phase behavior

Specific mechanical deformations

R. Parthasarathy, C. Yu and J. T. Groves, Langmuir, 2006, 22, 5095-5099

substrate-controlled curvature

Goal: imposing specific curvatures onto phaseseparated lipid membranes

Microfabricated Substrates:

Photolithography

Anisotropic etching

Isotropic etching

Controlled etching \rightarrow controlled curvature

Measure by AFM

Range: flat to r ≈ 100nm

double membrane system (1)

Double membrane system

Lower membrane:

- formed by vesicle fusion
- spatially uniform (~DMPC)

smallshuveer Parthas supported vesicle bilayer

uveer Parthasarathy,

uveer Parthasarathy, 2007 SiO₂

2007

Fluidity unaffected by substrate topography (isotropic, same D)

double membrane system

Double membrane system

Upper membrane:

- formed by giant vesicle rupture
- phase separation
- decoupled from substrate important

R. Parthasarathy, C. Yu and J. T. Groves, Langmuir, 2006, 22, 5095-5099

curvature guides phase separation

curvature guides phase separation

1D curvature

Substrate-induced curvature

- Quantitative
- Highlights particular deformation modes

 $0.2 \mu m$ 0.00.0

line tension - Curvature

One-dimensional curvature \rightarrow line tension irrelevant; only bending rigidity differences matter

(Also, Gaussian curvature = 0)

critical curvature

Disordered

Substrates with curvature range 0 to c:

Upper membrane: fluorescence

Curvature range

0.04 μm⁻¹

4 μm⁻¹

Ordered

R. Parthasarathy, C. Yu and J. T. Groves, Langmuir, 2006, 22, 5095-5099

5μ**m**

rigidity difference of membrane phases

Measurement of c^* allows determination of the difference in bending rigidity between phases ($\Delta \kappa$):

Difference in bending energy $E_b = A (\Delta \kappa/2) c^2$ must exceed thermal energy, k_BT :

A (Δκ/2) $c^{*2} = k_B T$ Δκ = 1.2 ± 0.6 × 10⁻²⁰ J (with A = 1 μm)

In cells, $A \approx 0.01 \ \mu m^2$, so $r^* = 1/c^* = 100 \ nm$, curvatures sharper than this should affect local composition!

conclusions (part 1)

Conclusions

- Curvature, beyond a critical value, can direct the spatial organization of lipid domains
- Response to (1D) curvature allows extraction of membrane mechanical properties ($\Delta \kappa$)

Future: composition, protein sorting, kinetics, other 2D materials

inter-membrane junctions

Another class of phenomena involving membrane topography...

Membrane Mechanics at Inter-Membrane Junctions

the immunological synapse

Communication at inter-cellular contacts

The immunological synapse between helper T-cells and Antigen-Presenting Cells (APCs)

Non-self proteins detected \rightarrow immune response (cytokine release, etc.)

arthasarath

Parthasara

2007

the immunological synapse

The immunological synapse

Green (center): signaling proteins (TCR / MHC)

Red (ring): Adhesion proteins (LFA / ICAM)

Long-range spatial organization!

Correlated with T-cell activation.

How is it controlled?...

Data from A. Grakoui, ... M. L. Dustin, Science, 1999, 285, 221-227.

driving the immunological synapse

Parthasarathy, 2007

What drives protein motions?

- (1) "Active" cytoskeletal forces pulling TCR proteins
- Actin depolymerization inhibits synapse formation
- Tracking of TCR clusters shows directed motion [1]
- (2) "Physical," membrane-mediated forces...

[1] K. Mossman and J. Groves, *Chem. Soc. Rev.*, 2007, 36, 46-54;
K. Mossman *et al. Science* 2005, 310, 1191-1193.

driving the immunological synapse

- (2) Physical, membranemediated forces
- APC isn't necessary:

T-cell / supported bilayer synapse! [1] MHC, ICAM at bilayer

(also, substrates with patterned barriers! [2])

solid substrate

Freethasarathy

[1] A. Grakoui, ... M. L. Dustin, Science, 1999, 285, 221-227.

[2] Mossman et al. Science 2005, 310, 1191-1193.

the immunological synapse

C

(2) Physical, membrane-mediated^(a) forces

APC isn't necessary

experiments..

• Synapse topography itself suggests physical mechanisms

modeling: passive mechanisms alone \rightarrow synapse*

S Rarbu Als Als Aghuveer Parthasarathy, 00

Parthasar

42

nm

* See refs cited: R. Parthasarathy and Jay T. Groves, Soft Matter 3, 24-33 (2007).

T-cell experiments: engineered MHC

Engineered MHC proteins:*

Longer MHC \rightarrow

- reduced T-cell triggering (less cytokine production)
- less exclusion of large proteins (CD45) from the synapse center – normally pushed aside by TCR/MHC?

* K. Choudhuri , ... P. A. van der Merwe, *Nature*, 2005, 436, 578-582

T-cells + Bilayers with MHC, ICAM on topographically patterned substrates:

Topographic control of protein distribution: TCR at plateaus

Subtle patterning (250 nm height, <4 μ m⁻¹ curvature) \rightarrow strong influence on protein organization!

(Substrate curvature does NOT influence diffusion)

Chenghan Yu – preliminary data

perspectives

Topographic patterning: influence on cell signaling?

Other synapses

- Other immunological synapses: cytotoxic T-cells, natural killer cells, "naive" helper T-cells
- "Virological synapses"
- Neural synapses
- Others?

Modeling – greater specificity needed

Experimental Model systems: Cell-free junctions...

cell-free inter-membrane junctions

To characterize passive modes of protein organization:

cell-free inter-membrane junctions

Control / measure composition, mobility, topography, etc.

→ What sorts of structures can self-assemble? How?

Pioneering work: Sackmann et al.*

Our setup*...

* See refs cited: R. Parthasarathy and Jay T. Groves, Soft Matter 3, 24-33 (2007).

[Not to scale] [All in aqueous solution]

inter-membrane junctions: setup

inter-membrane junctions: setup

Setup:

- Supported lipid bilayer
 [1% biotin-headgroups]
- Peripheral proteins
 [Anti-biotin antibodies]

• Upper membrane: ruptured giant vesicle

inter-membrane junctions

Upon junction formation, protein reorganization

R. Parthasarathy and J. T. Groves, *PNAS*, 2004, 101, 12798-12803.
R. Parthasarathy and J. T. Groves, *J. Phys. Chem. B*, 2006, 110, 8513-8516

protein patterns

patterns Adhesion of the second membrane leads to reorganization of the proteins

imaging: fluorescence

20µm

not to scale

ntibod

imaging: FLIC

- FLIC (fluorescence interference contrast microscopy): topographic information in the few to hundreds of nm range (Fromherz *et al.*, 1990's)
- Interference → intensity maps topography

* R. Parthasarathy and J. T. Groves, Cell Biochem. Biophys. 41: 391-414 (2004)]

structure and imaging: FLIC

FLIC imaging \rightarrow membrane topography, protein orientation

patterns: mechanisms

Protein reorganization is driven by:

bilayer-bilayer adhesion + protein mobility

- adhesion is strong pushing proteins aside
- but rapid not enough time for global expulsion

patterns: mechanisms

Micron length scale is set by:

membrane rigidity

• upper membrane fluctuations as junction forms – timescale τ_m a function of wavelength, λ ; bending modulus, κ_c

protein mobility γ_{200} • protein motion over distance λ – timescale τ_p a function of mobility, membrane adhesion energy

To couple, need $\tau_{m}(\lambda) > \tau_{p}(\lambda)$.

Satisfied for $\lambda > 1 \mu m$!

R. Parthasarathy and J. T. Groves, *PNAS*, 2004, 101, 12798-12803.
R. Parthasarathy and J. T. Groves, *J. Phys. Chem. B*, 2006, 110, 8513-8516

outlook

Despite similarities of scale, shape, cell-free systems are so far too simple (compared to cellular synapses)

Needed: greater complexity; "real" adhesion proteins; control of adhesion strength, protein sizes! T-cell/bilayer synapse

both:5 µm200

proteins at

cell-free

junction

Parts

 \rightarrow ? an understanding of the range of structures that can self-assemble at inter-membrane junctions.

More physical puzzles...

Immune Synapse: "holes" amid ICAM

"Holes" \leftrightarrow TCR clusters

Immune Synapse: "holes" amid ICAM

ICAM

TCR

Overlay

preliminary data from Jeffrey A. Nye

"Holes" ↔ TCR clusters – why? ?

dense TCR pushing proteins aside?

 topography: smaller TCR not permitting larger ICAM (like cell-free junctions?)

conclusions

um

Membrane Fluorescence

At cellular membranes: chemistry + mechanics

Schematic

- Curvature ↔ spatial organization of membrane molecules – *interfaces between "hard" & "soft" matter*
- Membrane mechanics \rightarrow long-range spatial organization $_{D}$ cellular, cell-free, and, "hybrid" junctions

acknowledgements

UC Berkeley

Jay Groves, Dept. of Chemistry

Phase Separation: w/ Chenghan Yu

T-Cell Synapses: Kaspar Mossman, Jeff Nye, Chenghan Yu, Boryana Rossenova; *Prof. Mike Dustin (NYU*)

U. of Oregon *Driven Membrane Fluctuations Curvature generation by vesicle trafficking proteins* etc.: *http://physics.uoregon.edu/~raghu*

Financial Support (*JTG*)10 μ mBurroughs Wellcome Career Award; Beckman Young Investigator; SearleScholar's Award; Hellman Faculty Award; NSF CAREERMiller Research Fellowship (*RP*)

