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We derive exact statistical properties of a recursive fragmentation process. We show that introduc-
ing a fragmentation probability 0 < p < 1 leads to a purely algebraic size distribution, P (x) ∝ x−2p,
in one dimension. In d dimensions, the volume distribution diverges algebraically in the small frag-
ment limit, P (V ) ∼ V −γ , with γ = 2p1/d. Hence, the entire range of exponents allowed by mass
conservation is realized. We demonstrate that this fragmentation process is non-self-averaging as
the moments Yα =

∑
i
xαi exhibit significant sample to sample fluctuations.
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Numerous physical phenomena are characterized by a
set of variables, say {xj}, which evolve according to a
random process, and are subject to the conservation law∑
j xj = const. An important example is fragmentation,

with applications ranging from geology [1] and fracture
[2] to the breakup of liquid droplets [3] and atomic nu-
clei [4,5]. Other examples include spin glasses [6], where
xj represents the equilibrium probability of finding the
system in the jth valley, genetic populations, where xj is
the frequency of the jth allele [7,8], and random Boolean
networks [9,10].

In most cases, stochasticity governs both the way the
fragments are produced and the number of fragmentation
events they experience. For example, in fragmentation
of solid objects due to impact with a hard surface frag-
ments may bounce several times before coming to a rest
[11]. The typical number of fragmentation events may
vary greatly depending on the initial kinetic energy. An-
other seemingly unrelated example is provided by DNA
segmentation algorithms [12], where homogeneous subse-
quences are produced recursively from an inhomogeneous
sequence until a predefined homogeneity level is reached.
Here, the number of segmentation events is determined
by the degree of homogeneity of the original sequence.

In this study, we examine a fragmentation process with
two types of fragments: stable fragments which do not
break anymore and unstable fragments. We show that
the size distribution is algebraic, and that the entire
range of power-laws allowed by the underlying conser-
vation law can be realized by tuning the fragmentation
probability. Additionally, these fragmentation processes
are characterized by large sample to sample fluctuations,
as seen from analysis of the moments of the fragment size
distribution.

Specifically, we consider the following recursive frag-
mentation process. We start with the unit interval and
choose a break point l in [0, 1] with a uniform probability
density. Then, with probability p, the interval is divided
into two fragments of lengths l and 1−l, while with prob-
ability q = 1−p, the interval becomes “frozen” and never
fragmented again. If the interval is fragmented, we recur-
sively apply the above fragmentation procedure to both

of the resulting fragments.
First, let us examine the average total number of frag-

ments, N . With probability q a single fragment is pro-
duced, and with probability p the process is repeated
with two fragments. Hence N = q + 2pN , yielding

N =
{
q/(1− 2p), if p < 1/2;
∞, if p ≥ 1/2. (1)

The average total number of fragments becomes infinite
at the critical point pc = 1/2, reflecting the critical na-
ture of the underlying branching process [13].

Next, we study P (x), the density of fragments of length
x. The recursive nature of the process can be used to ob-
tain the fragment length density

P (x) = qδ(x− 1) + 2p
∫ 1

x

dy

y
P

(
x

y

)
. (2)

The second term indicates that a fragment can be created
only from a larger fragment, and the y−1 kernel reflects
the uniform fragmentation density. Eq. (2) can be solved
by introducing the Mellin transform

M(s) =
∫
dxxs−1P (x). (3)

Eqs. (2) and (3) yield M(s) = q + 2ps−1M(s) and as a
result

M(s) = q

[
1 +

2p
s− 2p

]
. (4)

The average total number of fragments M(1) = N is
consistent with Eq. (1), and the total fragment length
M(2) = 1 is conserved in accord with 1 =

∫
dxxP (x).

(Here and in the following the integration is carried over
the unit interval, i.e., 0 < x < 1.) The inverse Mellin
transform of Eq. (4) gives

P (x) = q
[
δ(x− 1) + 2p x−2p

]
. (5)

Apart from the obvious δ-function, the length density is
a purely algebraic function. In particular, the fragment
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distribution diverges algebraically in the limit of small
fragments. Given such an algebraic divergence near the
origin, P (x) ∼ x−γ , length conservation restricts the ex-
ponent range to γ < 2. In our case γ = 2p, and since
0 < p < 1, the entire range of acceptable exponents
emerges by tuning the only control parameter p.

Interestingly, there is no analytic change in the frag-
ment length distribution as the critical point pc = 1

2 is
passed. Yet, the fragment length distribution becomes
independent of the initial interval length at the critical
point. Starting from an interval of length L, Eq. (5) can
be generalized to yield

P (x) = qδ(x− L) + 2pqL2p−1x−2p. (6)

Thus, the critical point may be detected by observing
the point at which the segment distribution becomes in-
dependent of the original interval length.

The recursive fragmentation process can be general-
ized to d dimensions. For instance, in two dimensions we
start with the unit square, choose a point (x1, x2) with a
uniform probability density, and divide, with probability
p, the original square into four rectangles of sizes x1×x2,
x1× (1−x2), (1−x1)×x2, and (1−x1)× (1−x2). With
probability q, the square becomes frozen and we never
again attempt to fragment it. The process is repeated
recursively whenever a new fragment is produced.

Let P (x), x ≡ (x1, . . . , xd), be the probability density
of fragments of size x1 × · · · × xd. This quantity satisfies

P (x) = qδ(x− 1) + 2dp
∫

dy
y1 · · · yd

P

(
x1

y1
, . . . ,

xd
yd

)
, (7)

with
∫
dy =

∫
dy1 · · ·

∫
dyd. Following the steps leading

to Eq. (4), we find that the d-dimensional Mellin trans-
form, defined by M(s) =

∫
dxxs1−1

1 · · ·xsd−1
d P (x) with

the shorthand notation s ≡ (s1, . . . , sd) obeys

M(s) = q

[
1 +

γd

s1 · · · sd − γd

]
, with γ = 2p1/d. (8)

Eq. (8) gives the total average number of fragments,
N = M(1) = q/(1 − 2dp) if p < 2−d and N = ∞ if
p ≥ 2−d. One can also verify that the total volume
M(2) = 1 is conserved. Interestingly, there is an ad-
ditional infinite set of conserved quantities: all moments
whose indices belong to the hyper-surface s∗1 · · · s∗d = 2d
satisfy M(s∗) = 1. In a continuous time formulation of
this process the same moments were found to be integrals
of motion [14–16]. The existence of an infinite number
of conservation laws is surprising, because only volume
conservation has a clear physical justification.

Next, we study the volume density P (V ) defined by

P (V ) =
∫
dxP (x) δ (V − x1 · · ·xd) . (9)

The Mellin transform, M(s) =
∫
dV V s−1P (V ), can be

obtained from Eq. (8) by setting si = s:

M(s) = q

[
1 +

γd

sd − γd

]
. (10)

Using the dth root of unity, ζ = e2πi/d, and the iden-
tity (sd − 1)−1 = d−1

∑
0≤k≤d−1 ζ

k/(s − ζk), M(s) can
be expressed as a sum over simple poles at γζk. Conse-
quently, the inverse Mellin transform is given by a linear
combination of d power laws:

P (V ) = q

[
δ(V − 1) +

γ

d

d−1∑
k=0

ζkV −γζ
k

]
. (11)

One can verify that this expression equals its complex
conjugate, and hence, it is real. Additionally, the one-
dimensional case (5) is recovered by setting d = 1.

The small-volume tail of the distribution can be ob-
tained by noting that the sum in Eq. (11) is dominated
by the first term in the series, which leads to

P (V ) ' γq

d
V −γ as V → 0. (12)

Although the value of the exponent γ = 2p1/d changes
with the dimension d, the possible range of exponents for
this process remains the same since 0 < 2p1/d < 2 when
0 < p < 1. In the infinite dimension limit, the volume
density becomes universal: P (V ) ∼ V −2.

The leading behavior of P (V ) in the large size limit
can be derived by using the Taylor expansion and the
identity

∑d−1
k=0 ζ

kn = δn,0 for n = 0, . . . , d− 1. One finds
that in higher dimensions the volume distribution van-
ishes algebraically near its maximum value,

P (V ) ' γd

(d− 1)!
(1− V )d−1 as V → 1. (13)

In fact, the entire multivariate fragment length density
can be also obtained explicitly. This can be achieved by
expanding the geometric series,

γd

s1 · · · sd − γd
=
∑
n≥0

d∏
i=1

(
γ

si

)n+1

,

and performing the inverse Mellin transform for
each variable separately. Using the identity∫
dxxs−1

(
ln 1

x

)n = n!s−n−1 gives

P (x) = q
[
δ(x− 1) + γdFd(z)

]
, (14)

with the shorthand notations

Fd(z) =
∞∑
n=0

(
zn

n!

)d
and z = γ

(
d∏
i=1

ln
1
xi

)1/d

. (15)

In two dimensions, F2(z) = I0(2z) where I0 is the modi-
fied Bessel function.

2



The small size behavior of P (x) can be obtained by us-
ing the steepest decent method. The leading tail behav-
ior, Fd(z) ' (2πz)

1−d
2 ezd for z � 1, corresponds to the

case when at least one of the lengths is small, i. e. xi � 1.
Returning to the original variables we see that the frag-
ment distribution exhibits a “log-stretched-exponential”
behavior

P (x) ∼

[
d∏
i=1

ln
1
xi

]− d−1
2d

exp

dγ( d∏
i=1

ln
1
xi

)1/d
 . (16)

The fragment size distribution represents an average
over infinitely many realizations of the fragmentation
process, and hence, it does not capture sample to sample
fluctuations. These fluctuations are important in non-
self-averaging systems, where they do not vanish in the
thermodynamic limit. Useful quantities for characteriz-
ing such fluctuations are the moments [17,18]

Yα =
∑
i

xαi , (17)

where the sum runs over all fragments.
We are interested in the average values 〈Yα〉 and
〈YαYβ〉. For integer α, 〈Yα〉 is the probability that α
points randomly chosen in the unit interval belong to the
same fragment. The expected value of Yα satisfies

〈Yα〉 = q + p〈Yα〉
∫
dy [yα + (1− y)α] . (18)

The first term corresponds to the case where the unit in-
terval is not fragmented, and the second term describes
the situation when at least one fragmentation event has
occurred. Eq. (18) gives

〈Yα〉 = q

[
1 +

2p
α+ 1− 2p

]
(19)

if α > 2p− 1, and 〈Yα〉 =∞ if α ≤ 2p− 1. As expected,
Eq. (19) agrees with the moments of P (x) obtained by
integrating Eq. (5), 〈Yα〉 =

∫
dxxαP (x).

However, higher order averages such as 〈YαYβ〉 do not
follow directly from the fragment size density. For integer
α and β, 〈YαYβ〉 is the probability that, if α + β points
are chosen at random, the first α points all lie on the
same fragment, and the last β points all lie on another
(possibly the same) fragment. This quantity satisfies

〈YαYβ〉 = q + p〈YαYβ〉
∫
dy
[
yα+β + (1− y)α+β

]
(20)

+ p〈Yα〉〈Yβ〉
∫
dy
[
yα(1− y)β + (1− y)αyβ

]
,

which yields

〈YαYβ〉 = q +
2pq

α+ β + 1− 2p
(21)

+ 2p
Γ(α+ 1)Γ(β + 1)

Γ(α+ β + 1)
〈Yα〉〈Yβ〉

α+ β + 1− 2p

if α, β, α+ β > 2p− 1, and 〈YαYβ〉 =∞ otherwise.
Eq. (21) shows that 〈YαYβ〉 6= 〈Yα〉〈Yβ〉, and in partic-

ular, 〈Y 2
α 〉 6= 〈Yα〉2. Therefore, fluctuations in Yα are sig-

nificant and the recursive fragmentation process is non-
self-averaging. Hence, statistical properties obtained by
averaging over all realizations are insufficient to probe
sample to sample fluctuations. This behavior is reminis-
cent of the lack of self-averaging found in fragmentation
processes that exhibit a shattering transition [19].

In principle, higher order averages such as 〈Y nα 〉 can be
calculated recursively by the procedure outlined above.
The resulting expressions are cumbersome and not terri-
bly illuminating. Instead, one may study the distribution
Qα(Y ) which obeys

Qα(Yα) = qδ(Yα − 1) (22)

+p
∫
dl

∫ Yα

0

dZ
1
lα
Qα

(
Z

lα

)
1

(1− l)α
Qα

(
Yα − Z
(1− l)α

)
.

In addition to the recursive nature of the process, we
have employed extensivity, i.e., 〈Yα〉 ∝ Lα in an interval
of length L.

Clearly, Y0 = N and Y1 = 1, and therefore, Q1(Y1) =
δ(Y1−1) and Q0(N) can also be determined analytically
as well. Generally, different behaviors emerge for α > 1
and α < 1. We concentrate on the former case where the
support of the distribution Qα(Y ) is the interval [0,1].
The Laplace transform, Rα(λ) =

∫ 1

0
dYα e

−λYαQα(Yα),
obeys

Rα(λ) = q e−λ + p

∫ 1

0

dl Rα [λlα]Rα [λ(1− l)α] . (23)

The behavior of Qα(Yα) in the limit Yα → 0 is reflected
by the asymptotics of Rα(λ) as λ → ∞. Substituting
Rα(λ) ∼ exp(−Aλβ) into both sides of Eq. (23), evalu-
ating the integral using the method of steepest decent,
and equating the left and right hand sides gives β = 1/α.
Consequently, we find that the distribution has an essen-
tial singularity near the origin,

Qα(Yα) ∼ exp
(
−BY −

1
α−1

α

)
as Yα → 0. (24)

Extremal properties can be viewed as an additional
probe of sample to sample fluctuations. Thus, we con-
sider the length density of the largest fragment, L(x).
Clearly, L(x) = P (x) for x ≥ 1/2, i.e.,

L(x) = qδ(x− 1) + 2pq x−2p for x ≥ 1/2. (25)

In the complementary case of x < 1/2, L(x) satisfies

L(x) = 2qp2L−
(

x

1− x

)
+ 2p2

1∫
1−x

dy

y
L
(
x

y

)
(26)

+ 2p3

1−x∫
x

dy

y
L
(
x

y

)
L−
(

x

1− y

)
,
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where L−(u) =
∫ u

0
dvL(v). The first term on the right-

hand side of Eq. (26) describes the situation when the
unit interval was fragmented into two intervals of lengths
x and 1 − x, with stable smaller fragment and unstable
longer fragment (hence the factor qp2). The latter L−
factor guarantees that subsequent fragmentation of the
unstable interval does not lead to a fragment longer than
x. If one of the 1st generation fragments is shorter that
x, then only the longest 1st generation fragment con-
tributes; this leads to the second term on the right-hand
side of Eq. (26). The next term describes the situation
when both 1st generation fragments are longer than x,
so the longest fragment can arise out of breaking any of
the two fragments. The factor L− guarantees that the
longest fragment of length x comes from the correspond-
ing 1st generation fragment, and the factor p3 guaran-
tees that both 1st generation fragments remain unsta-
ble. Since L(x) obeys different equations in different re-
gions, it looses analyticity on the boundaries. Namely,
L(x) possesses an infinite set of singularities at x = 1/k
which become weaker as k increases. Similar singulari-
ties underly extremal properties of a number of random
processes, including random walks, spin glasses, random
maps, and random trees [7,8,17,18,20].

For completeness, we note that the above results ex-
tend to a complementary class of fragmentation processes
where first fragmentation occurs, and then fragments re-
main unstable with probability p. In this case, the δ func-
tion drops, and the the size distribution becomes purely
algebraic, P (x) = 2qx−2p.

In summary, we have found that recursive fragmenta-
tion is scale free, i.e., the fragment length distribution is
purely algebraic. In higher dimensions, the volume distri-
bution is a linear combination of d power laws, and conse-
quently, an algebraic divergence characterizes the small-
fragment tail of the distribution. A number of recent im-
pact fragmentation experiments reported algebraic mass
distributions with the corresponding exponents ranging
from 1 to 2 [11]. It will be interesting to further examine
whether our simplified model is suitable for describing
fragmentation of solid objects.

We have also found that the recursive fragmenta-
tion process exhibits a number of features that arise in
other complex and disordered systems, such as non-self-
averaging behavior and the existence of an infinite num-
ber of singularities in the distribution of the largest frag-
ment. These features indicate that large sample to sam-
ple fluctuations exist, and that knowledge of first order
averages may not be sufficient for characterizing the sys-
tem. Our 1D model is equivalent to applying the afore-
mentioned DNA segmentation algorithm to a random
sequence. It will be interesting to study self-averaging
and extremal properties of genetic sequences, which are

known to have commonalities with disordered systems.
Indeed, if these subtle features are found for genetic se-
quences as well, this would suggest that much caution
should be exercised in statistical analysis of DNA.
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