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Abstract

This report concerns the geometric analysis of the averaged Euler equations of ideal
incompressible hydrodynamics. The equations are a system of conservative PDEs that
model the motion of fluids at length scales greater than some given scale in the problem
(for instance, the smallest scale possible within the numerical discretization). Remark-
ably, this conservative model is able to capture the vortex merger phenomenon without
the addition of viscous dissipation. We prove sharp well-posedness results for the sys-
tem by studying the geometry of the group of volume preserving diffeomorphisms; it
is rigorously shown that geodesics of an H1 right invariant metric on this group are
solutions to the averaged Euler equations.

1 Introduction

The averaged Euler (or Euler-α) equations are a system of hyperbolic PDEs which model
the motion of ideal incompressible fluids at length scales larger than some small length
scale α > 0; on a compact oriented n-dimensional Riemannian manifold M with metric
compatible connection ∇, they may be expressed as

∂tU
ε + (1− ε)−1

[
∇ε
U(1− ε4)U ε − ε(∇U ε)T · 4U ε

]
= (1− ε4)−1 grad p,

div U ε = 0, U ε(0) = U ε
0,

(1.1)

with appropriate boundary conditions and with ε = α2 (here, 4 is the rough Laplacian
which we shall discuss in subsection 2.3). This system of PDEs appeared with ε = α2 in
[9] as a model of large scale fluid motion, but with ε = α1, this system is also the model
for ideal non-Newtonian fluids of second grade (see [5] and the references therein for the
history).
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This report will survey only the geometric analysis of the inviscid equations (1.1). See
[14] for the use of (1.1) as a conservative model of vortex merger in two spatial dimensions.
Although we shall not discuss the viscous version of these equations herein, there is a growing
list of literature that the reader is referred to [7, 3, 4] and references therein.

2 Averaged Euler Equation on compact boundaryless

Riemannian manifolds

2.1 Preliminaries

Let (M, 〈·, ·〉) be a compact oriented Riemannian n dimensional manifold without boundary
and define Ds(M) to be the set of all bijective maps η : M →M such that η and η−1 are of
Sobolev class Hs. For s > n

2
+1, Ds(M) is a C∞ infinite dimensional Hilbert manifold which,

about each η, is locally diffeomorphic to the Hilbert space Hs
η(TM) := {X ∈ Hs(M,TM) :

π ◦X = η} where π : TM →M . The condition s > n
2

+ 1 ensures that Ds(M) ⊂ Hs(M,M)
is open (see [10], Proposition 2.3.1).

A local chart is given by ωexp : Hs
η(TM) → Ds(M), ωexp(X) = exp ◦ X, where exp is

the Riemannian exponential map of 〈·, ·〉. The manifold Ds(M) is a topological group with
composition being the group operation. The ω-lemma asserts that for each η ∈ Ds(M),
right composition αη : Ds(M)→ Ds(M) is C∞, while for all η ∈ Ds+r(M), left composition
ωη : Ds(M)→ Ds(M) is Cr.

2.2 Weak L2 structure

The weak L2 right invariant Riemannian metric on Ds(M) is given by

〈Xη, Yη〉0 =

∫
M

〈Xη(x), Yη(x)〉η(x)µ(x), (2.1)

where η ∈ Ds(M), Xη, Yη ∈ TηDs(M), and 〈·, ·〉 and µ are the Riemannian metric and
volume element on M .

2.3 The Laplacian

Letting 4 = dδ + δd denote the Laplace-de Rham operator1, we define the Hs metric as
follows. Let X, Y ∈ TeDs(M) and set

〈X, Y 〉s =

∫
M

〈X(x), (1 +4s)Y (x)〉µ(x). (2.2)

Extending 〈·, ·〉s to Ds(M) by right invariance gives a smooth invariant metric on Ds(M).
We shall be particularly interested in the metric 〈·, ·〉1.

1 We identify vector fields and 1-forms on M .
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In order to obtain formulas for the unique Levi-Civita covariant derivative of 〈·, ·〉1, it is
convenient to express the metric (2.2) in terms of the rough Laplacian 4̂ = Tr∇∇. We will
need the relationship between the rough Laplacian and the Laplace-de Rham operator so
that we may express (2.2) in terms of 4̂. Let ∇∗ denote the L2 formal adjoint of ∇ so that
for any X ∈ C∞(TM) and S, T ∈ C∞(E), E a vector bundle over M , 〈∇∗XS(x), T (x)〉0 =
〈S(x),∇XT (x)〉0. Then ∇∗X = −∇X + divX. To see this, note that

〈∇∗XS, T 〉0 =

∫
〈S,∇XT 〉µ =

∫
X〈S, T 〉µ− 〈∇XS, T 〉0

=

∫
〈S, T 〉divXµ− 〈∇XS, T 〉0.

If divX = 0, then ∇∗X = −∇X which we shall often make use of.
Next, let τ ∈ C∞(T ∗M ⊗ TM), let {ei} be a local orthonormal frame on M , and let

σ ∈ C∞(TM) with support in the domain of definition of the local frame {ei}. Then

〈∇∗τ, σ〉0 = 〈τ,∇σ〉0 = 〈τ〈ei〉,∇eiσ〉0 = 〈∇∗ei(τ〈ei〉), σ〉0.

We may choose the frame {ei}, so that locally ∇ei = 0 and hence divei = 0. Then

∇∗τ = ∇∗eiτ〈ei〉 = −∇ei(τ〈ei〉) = −(∇eiτ)〈ei〉 = −∇τ(ei, ei),

where the last equality follows from our choice of frame, since ∇ei(τ〈ei〉) = (∇eiτ)〈ei〉 =
∇τ〈ei, ei〉. Hence ∇∗τ = −∇τ(ei, ei), and since ∇X ∈ C∞(T ∗M ⊗ TM), we have that

4̂ = −∇∗∇.

With the notation established, we write Bochner’s formula relating 4̂ with 4 on 1-forms as

4α = 4̂α + α〈Ric〈·〉〉, (2.3)

where Ric〈X〉 := R(ei, X)ei, R being the curvature of ∇ on M . Because the Ricci tensor is
a self-adjoint operator with respect to the metric on TM , for X ∈ C∞(TM), we have that

4X = ∇∗∇X +Ric〈X〉.

2.4 Weak H1 metric

Using (2.2), the H1 metric at the identity may be re-expressed as

〈X, Y 〉1 = 〈X, (1 +Ric)Y 〉L2 + 〈X,∇∗∇Y 〉L2

= 〈X, (1 +Ric)Y 〉L2 + 〈∇X,∇Y 〉L2 (2.4)

for all X, Y ∈ TeDsµ(M). The metric (2.4) extends smoothly by right translation in the
following way. Let Xη, Yη ∈ TηDsµ(M). Then

〈Xη, Yη〉1 =

∫
M

〈Xη(x), Yη(x) +Ric〈Yη ◦ η−1〉 ◦ η(x)〉η(x)

+〈∇(Xη ◦ η−1) ◦ η(x),∇(Yη ◦ η−1) ◦ η(x)〉η(x)µ. (2.5)
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From the implicit function theorem, the set of all volume preserving Hs diffeomorphisms
of M , Dsµ(M) := {η ∈ Ds(M) : η∗(µ) = µ}, is a submanifold of Ds(M) with the induced
right invariant H1 Riemannian metric, as well as a subgroup. For each η ∈ Dsµ(M), the
metric (2.5) defines a smooth orthogonal projection Pη : TηDs(M)→ TηDsµ(M) defined by

Pη(X) = (Pe(X ◦ η−1)) ◦ η, X ∈ TηDs(M), (2.6)

where Pe is the H1 orthogonal projection onto the 1-forms {α ∈ Hs : α ∈ kerδ} in the Hodge
decomposition

Hs(T ∗M) = kerδ ⊕H1 dHs+1(M). (2.7)

Remark 2.1 We remark here that it is essential to use the Laplace-de Rham operator in
de�ning the metric (2.5) in order for the Hodge decomposition to hold. Using the rough
Laplacian instead to de�ne the H1 metric would not provide an orthogonal decomposition
in the H1 topology of divergence-free vector �elds and gradients of functions, unless the
manifold M is either 
at or Einstein, as can be seen from (2.3).

3 H1 covariant derivative and its geodesic flow

3.1 Weak H1 Riemannian connection

Next, we compute the Riemannian covariant derivative on Ds(M) of the H1 right invariant
metric restricted to vectors tangent to Dsµ(M). Using the Hodge decomposition, we define

the induced covariant derivative ∇̃1 on Dsµ(M). We then prove the local well-posedness of

the geodesic equations of ∇̃1.

Theorem 3.1 ([16]) The unique Levi-Civita covariant derivative ∇1 of 〈·, ·〉1 restricted to
vector �elds in TDsµ(M) is given by

∇1
XY = ∇0

XY + A(X, Y ) +B(X,Y ) + C(X, Y ), (3.1)

where for any η ∈ Dsµ(M),

Aη(Xη, Yη) =
1

2
(1 +Ricη − 4̂η)

−1
[
∇∗{∇Xη[Tη]−1∇Yη[Tη]−1[Tη]−1t

+∇Yη[Tη]−1∇Xη[Tη]−1[Tη]−1t + (∇Xη[Tη]−1)(∇Yη[Tη]−1)t[Tη]−1t

+(∇Yη[Tη]−1)(∇Xη[Tη]−1)t[Tη]−1t − (∇Xη[Tη]−1)t(∇Yη[Tη]−1)[Tη]−1t

− (∇Yη[Tη]−1)t(∇Xη[Tη]−1)[Tη]−1t}
]
,

Bη(Xη, Yη) =
1

2
(1 +Ricη − 4̂η)

−1
{
− Tr[R(∇XηTη

−1〈·〉, Yη) ·
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+R(∇YηTη−1〈·〉, Xη) ·+R(Xη, ·)∇YηTη−1〈·〉+R(Yη, ·)∇XηTη
−1〈·〉]

+∇∗[R(Xη, T η
−1t)Yη +R(Yη, Tη

−1t)Xη]
}
,

Cη(Xη, Yη) = (1 +Ricη − 4̂η)
−1
[
(∇XηRic)〈Yη〉+ (∇YηRic)〈Xη〉

−1

2

[
〈(∇Ric〈·〉〈Xη〉, Yη〉] + 〈(∇Ric〈·〉〈Yη〉, Xη〉]

]
−Ricη〈[Xη, Yη]〉

]
, (3.2)

where Xη, Yη ∈ TηDsµ(M),

Ricη〈Xη〉 = Ric〈Xη ◦ η−1〉 ◦ η

is the right-translated Ricci tensor,

4̂η = −∇∗[∇(·)(Tη)−1(Tη)−1t],

and (·)] is the operator mapping 1-forms to vector �elds through the given metric on M .

Remark 3.1 Note that for Xη ∈ Hs
η(TM), the operators [Tη]−1, [Tη]−1t, and ∇Xη induce

the following pointwise operators

[Tη(x)]−1 : Tη(x)M → TxM,

[Tη(x)]−1t : TxM → Tη(x)M,
(∇Xη)(x) : TxM → Tη(x)M.

Now, on Hs+1(M), 4 = dδ = −div grad, so an explicit formula for Pe : TeDs(M) →
TeDsµ(M) is obtained as follows. Suppose that V ∈ Hs(TM), and let p ∈ Hs+1(M) solve
4p = divV . Then

Pe(V ) = V − grad4−1divV.

We shall denote the orthogonal projection onto dHs+1(M) by

Qe(V ) = grad4−1divV. (3.3)

Dsµ(M) thus becomes a weak Riemannian submanifold of Ds(M) with the metric (2.5),
and the induced covariant derivative

∇̃1 = P ◦ ∇1

is inherited from Ds(M).
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3.2 Geodesic flow of ∇̃1

Theorem 3.2 ([16]) If η(t) is a geodesic of ∇̃1, then U(t) = η̇ ◦ η−1(t) is a vector �eld on
M which satis�es the mean motion equations of an ideal 
uid,

∂tU(t) + (1 +4)−1
[
∇U(t)(1 +4)U(t) + 〈∇U(t)〈·〉,4U(t)〉]

]
= −grad p(t)

divU(t) = 0, U(0) = U0,
(3.4)

where p(t) is the pressure function which is determined from V (t). Laplacian

Lemma 3.1 ([16]) Let 4̂(·) : ∪η∈Dsµ(M)H
s
η(TM) ↓ Dsµ(M) −→ ∪η∈Dsµ(M)H

s−2
η (TM) ↓ Dsµ(M)

be given by
4̂η = −∇∗[∇(·)(Tη)−1(Tη)−1t ]

and the identity on Dsµ(M). Then 4̂(·) is a C1 bundle map.

Lemma 3.2 ([16]) The operator (1 + Ric(·) − 4̂(·))
−1 : ∪η∈Dsµ(M)H

s−2
η (TM) ↓ Dsµ(M) −→

∪η∈Dsµ(M)H
s
η(TM) ↓ Dsµ(M) is a C1 bundle map.

For the following theorem, recall that TTDsµ(M) is identified with Hs maps Y : M →
TTM covering some Xη ∈ TηDsµ(M).

Theorem 3.3 ([16]) For s > n
2

+ 1, there exists a neighborhood of e ∈ Dsµ(M) and an
ε > 0 such that for any V ∈ TeDsµ(M) with ‖V ‖s < ε, there exists a unique geodesic
η̇ ∈ C1((−2, 2), TDsµ(M)) satisfying

∇̃1
η̇η̇ = 0, η(0) = e, η̇(0) = V,

with smooth dependence on V .

Remark 3.2 Together with Theorem 3.2, we have proven the local well-posedness of the
Cauchy problem for the Euler-α equations (3.4) on M .

This implies the following facts.

Corollary 3.1 ([16]) Let η ∈ Dsµ(M) be in a su�ciently small neighborhood of e. Then,
there exists a vector �eld V on M such that expe(V ) = η. In other words, the Euler-α 
ow
with initial condition V reaches η in time 1.

As another corollary, we immediately have the H1 analog of Theorem 12.1 of [6].

Corollary 3.2 ([16]) For s > n
2

+ 1, let η(t) be a geodesic of the right invariant H1 metric
on Dsµ(M). If η(0) ∈ Ds+kµ (M) and η̇(0) ∈ Tη(0)Ds+kµ (M) for 0 ≤ k ≤ ∞, then η(t) is Hs+k

on M for all t for which η(t) was de�ned in Dsµ(M).
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This has the important consequence that the time of existence of a geodesic does not depend
on s, so that a geodesic with C∞ initial conditions is a curve in

Dµ(M) = ∩s>n/2Dsµ(M),

where Dµ(M) is the ILH (inverse limit Hilbert) Lie group of C∞ diffeomorphisms.
Our method also gives sharp well-posedness for the Camassa-Holm equation.

Theorem 3.4 [16, 8] The Cauchy problem for the 1D CH equation, given by

η̈ = −
[
(1− ∂2

y)
−1∂y

(
(η̇ ◦ η−1)2 +

1

2
(η̇ ◦ η−1)2

y

)]
◦ η (3.5)

with initial conditions
η(0) = e, η̇(0) = u0,

has a unique solution (η, η̇) in Ds(S1)×Hs(S1) for s > 3
2

on a �nite time interval where the
solution has C1 dependence on time and smooth dependence on initial data.

4 Curvature of the H1 metric

4.1 Curvature of ∇̃1

We define the (weak) curvature R̃1 of the induced metric 〈·, ·〉1 on Dsµ(M) as

R̃1
η : TηDsµ(M)× TηDsµ(M)× TηDsµ(M)→ TηDsµ(M),

R̃1
η(Xη, Yη)Zη = (∇̃1

X∇̃1
YZ)η − (∇̃1

Y ∇̃1
XZ)η − (∇̃1

[X,Y ]Z)η,

where η ∈ Dsµ(M), and X,Y, Z are smooth extensions of Xη, Yη, Zη in a neighborhood of η.

Theorem 4.1 ([16]) The curvature R̃1 of the induced H1 metric on Dsµ(M) is a trilinear
operator which is continuous in the Hs topology for s > n

2
+ 2.

Remark 4.1 One might try to argue that the boundedness in Hs of R̃1 follows immediately
from the regularity of the geodesic spray, but this argument fails for the following reason.
Let U ⊂ Dsµ(M) be su�ciently small so as to allow a trivialization of TDsµ(M), and let

A1 be the local connection 1-form de�ning the H1 covariant derivative ∇̃1. The fact that
the geodesic spray of ∇̃1 is C1 implies that A1 is a C1 map as well. Now the curvature
can be de�ned as dA1 + A1 ∧ A1, and it may seem that for all η ∈ U , dA1(η) is then
necessarily a continuous operator from Hs into Hs. This is not the case, however, as the
exterior derivative is de�ned in terms of the H1-Frechet derivative, while the fact that A1 is
C1 is veri�ed using the Hs-Frechet derivative. It is for this reason, that curvatures of strong
metrics are trivially bounded operators in the strong topology of the manifold, while for weak
metrics, one must verify any boundedness claims.
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4.2 Jacobi equations

We can now prove the existence of solutions to the Jacobi equation

∇̃1
η̇∇̃1

η̇Y + R̃1
η(Y, η̇)η̇ = 0 (4.1)

along the geodesic η(t) of the H1-metric which solves the Euler-α equation in Lagrangian
coordinates. Note that the Euler-α equations may equivalently be written as

∇̃1
η̇η̇ = 0, (4.2)

for η(t) a curve in Dsµ(M). The Jacobi equation (4.1) is the linearization of (4.2) along the
geodesic.

Theorem 4.2 [16] Let s > n
2

+ 2 and let Ye, Ẏe ∈ TeDsµ(M). Then there exists a unique Hs

vector �eld Y (t) along η that is a solution to (4.1) with initial conditions Y (0) = Ye and
∇̃1
η̇Y (0) = Ẏe.

5 Stability and Curvature

In this section, we define the notion of Lagrangian linear stability.

5.1 Lagrangian stability

For k ≥ 1, a fluid motion η is Lagrangian Hk (linearly) stable if every solution of the Jacobi
equation (4.1) along η is bounded in the Hk norm.

Theorem 5.1 ([16]) If η(t) is a geodesic of ∇̃1 on Dsµ(M) whose pressure function p(t) is
constant for all t and if the sectional curvature of R1 is nonpositive, then η is Hk Lagrangian
unstable for k ≥ 1.

If η is a geodesic in Dsµ(M), two points η(t1) and η(t2) are conjugate with respect to η if
there exists a nonzero Jacobi field Y (t) along η such that Y (t1) = Y (t2) = 0. Such Jacobi
fields are thus stable perturbations of the initial flow.

Corollary 5.1 ([16]) Let η be a pressure constant geodesic in Dsµ(M). If the sectional
curvature of R1 is nonpositive, then there are no conjugate points along η.

5.2 Lagrangian Stabilization

We now present new results on the sectional curvature of the group of area-preserving
diffeomorphisms of a two-torus with a right invariant H1 metric in view of the application
to the Lagrangian stability analysis following Arnold [1].
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Theorem 5.2 ([15]) The explicit formulas for the H1
α right invariant inner product and,

the coadjoint action and Levi-Civita covariant derivative uniquely associated to it on Dµ(T 2)
have the following form:

〈ek, el〉 = Aα(k)δk,−l (5.1)

[ek, el] = (k × l)ek+l (5.2)

ad∗elek = bk,lek+l, where bk,l = (k × l) Aα(k)

Aα(k + l)
(5.3)

∇ekel = dk,k+lek+l, where dk,k+l =
k × l
s

(
1− Aα(k)− Aα(l)

Aα(k + l)

)
. (5.4)

Further the Riemannian curvature operator of the H1
α metric is given by

Rk,l,m,n ≡ 〈R(ek, el)em, en〉 = (−dl+m,k+l+mdm,l+m

+dk+m,k+l+mdm,k+m + (k × l)dm,k+l+m)Aα(k + l +m)S. (5.5)

We shall analyze the sectional curvature K1 of the H1
α metric in the plane defined by the

stream functions
ξ = cos(k, x) and η = cos(l, x).

The function cos(k, x) is a stationary solution to both the Euler and Euler-α equations,
and thus presents us with an opportunity to examine the stabilizing effect produced by the
regularized H1

α geodesic motion.

Theorem 5.3 ([15]) Let K1(ξ, η) denote the sectional curvature on (Dµ(T2), H1
α(T2) where

ξ = cos(k, x) and η = cos(l, x). For |ε| su�ciently small, let l = k + ε. Then for any k,
there exists 0 < α0(k) < 1, such that for all α > α0(k), K1(ξ, η) > 0.

6 Averaged Euler Equation on compact Riemannian

manifolds with boundary

Letting N denote the normal bundle on ∂M , it is proven in [13] that the set

N s
µ(M) = {η ∈ Dsµ(M) | Tη|∂M · n ∈ H

s− 3
2

η (N), for all n ∈ Hs− 1
2 (N)}

is a new subgroup of Dsµ(M). Here Hs
η denotes the space of sections of N covering the

diffeomorphism η.
It is then proven that geodesic motion of the right invariant H1

α pseudo-metric on N s
µ(M)

given at e ∈ N s
µ(M) by (Hn is the second fundamental form of ∂M)

1

2

∫
M

[
g〈u, u〉+ α2g〈∇u,∇u〉

]
µ+ α2

∫
∂M

Hn〈u, u〉γ
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is smooth in the strong Hs topology.
The tangent space of N s

µ(M) at e consists of divergence-free vector fields of class Hs

satisfying the free-slip or normal boundary conditions

g〈u, n〉 = 0, (∇nu)tan + Sn〈u〉 = 0 on ∂M ; (6.1)

hence, geodesics of the right invariant H1
α pseudo-metric are solutions of the Euler-α equa-

tions with free-slip or normal boundary conditions

v̇ +∇uv − α2[∇u]T · 4u = −grad p in M,
v = (1− α24)u, div u = 0,

g〈u, n〉 = 0, (∇nu)tan + Sn〈u〉 = 0,
(6.2)

where, Sn is the symmetric operator associated to the second fundamental form Hn of the
boundary ∂M , and where we suppress the dependence on α of u.

For each η ∈ Dsµ(M), we may use the L2 Hodge decomposition to define the projection
Pη : TηDs(M)→ TηDsµ(M) given by

Pη(X) = (Pe(X ◦ η−1)) ◦ η,

where X ∈ TηDsµ(M), and Pe is the L2 orthogonal projection onto the divergence-free vector
fields on M . Recall that this projection is given by

Pe(v) = v − gradp(v)− gradb(v),

where p is the solution of the boundary value problem

4p(v) = div v in M

p(v) = 0 on ∂M,

and b solves

4b(v) = 0 in M

g〈gradb(v), n〉 = g〈v − gradp, n〉 on ∂M,

where n is the orientation preserving normal vector field on ∂M . The function p is the
pressure associated with v, while the function b is a smooth extension of the normal com-
ponent of v along ∂M to the interior of M . Subtraction of grad b(v) is necessary as volume
preserving diffeomorphisms of a manifold with boundary leave the boundary invariant.

6.1 The subgroup N s
µ(M)

Theorem 6.1 ([13]) The set N s
µ(M) is a subgroup of Dsµ(M) for s > n

2
+ 1, such that

TeN s
µ(M) = {u ∈ TeDsµ(M) | (∇nu|∂M)tan + Sn〈u〉 = 0 ∈ Hs− 3

2 (T∂M)

for all n ∈ Hs− 1
2 (N)},
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where Sn : T∂M → T∂M is the symmetric linear operator satisfying

g〈Sn〈u〉, v〉 = Hn〈u, v〉, u, v ∈ Hs− 3
2 (T∂M),

where Hn is the second fundamental form of ∂M given by Hn〈u, v〉 = −g〈∇un, v〉.

We define Pα : TeDsµ(M)→ TeN s
µ(M) to be the H2-orthogonal projector. If there is no

boundary, then Pα is the same as P , the usual Hodge L2 orthogonal projection. For the
case of normal (free-slip) boundary conditions, we have

Pα = (1− α24)−1Pe(1− α24)

where D(1− α24) = D(L) and

D(L) = {v ∈ H2(TM) : div v = 0, g〈u, n〉 = 0 on ∂M, (∇nu)tan = 0}. (6.3)

We then define Pα
η : TηDs(M)→ TηN s

µ(M) by

Pα
η (X) =

[
(1− α24)−1Pe(1− α24)(X ◦ η−1)

]
◦ η. (6.4)

7 Mean Hydrodynamics on the Subgroup N s
µ(M)

7.1 H1 Metric on N s
µ(M)

In this section, we shall consider geodesic motion of the weak H1
α right invariant (pseudo)

metric on the group N s
µ(M) which is defined as follows. For X,Y ∈ TeN s

µ(M), we set

〈X,Y 〉1 =

∫
M

(
g〈X(x), Y (x)〉+ α2g〈∇X(x),∇Y (x)〉

)
µ(x) + α2

∫
∂M

Hn〈X(x), Y (x)〉γ(x)

(7.1)
and extend 〈·, ·〉1 to N s

µ(M) by right invariance. Here n is the outward unit normal on ∂M
and γ is the induced volume measure on ∂M .

7.2 Euler-Poincaré equations on TeN s
µ(M)

Theorem 7.1 (Euler-Poincaré for N s
µ(M) [13]) Equip N s

µ(M) with the right invariant
metric 〈·, ·〉1. Then, a curve η(t) in N s

µ(M) is a geodesic of this metric if and only if
u(t) = Tη(t)Rη(t)−1 η̇(t) = η̇(t) ◦ η(t)−1 satis�es

d

dt
u(t) = −Pα ◦ ad∗u(t)u(t) (7.2)

where ad∗u is the formal adjoint of adu with respect to the metric 〈·, ·〉1 at the identity, i.e.,

〈ad∗uv, w〉1 = 〈v, [u,w]〉1

for all u, v, w ∈ TeN s
µ(M).
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7.3 The geodesic spray on N s
µ(M)

We can now prove the analogue of Theorem 3.3 of [16] on the subgroup N s
µ(M).

Theorem 7.2 ([13]) For s > n
2

+ 1, there exists a neighborhood of e ∈ N s
µ(M) and an

ε > 0 such that for any V ∈ TeN s
µ(M) with ‖V ‖s < ε, there exists a unique geodesic

η̇ ∈ C1((−2, 2), TN s
µ(M)) satisfying

∇̃1
η̇η̇ = 0, η(0) = e, η̇(0) = V,

with smooth dependence on V .

8 The limit of zero viscosity on N s
µ(M)

The Navier-Stokes α-model is obtained by adding viscous diffusion to the Euler-α model.
With the normal (free slip) boundary conditions, the equations are given by

∂tu− ν4u+ (1− α24)−1
[
∇u(1− α24)u− α2∇ut · 4u

]
= −(1− α24)−1grad p. (8.1)

In [7], global well-posedness of (8.1) was established, as well as estimates on the dimension
of the global attractor. Having proven the smoothness of the geodesic spray of the Euler-α
equations, we follow [6] and use the product formula approach to prove the existence of the
limit of zero viscosity of (8.1). In the case that α = 0, this limiting procedure is believed to
be valid only for compact manifolds without boundary (e.g., for flows with periodic boundary
conditions), as the Navier-Stokes equations and the Euler equations do not share the same
boundary conditions on manifolds with boundary. When, α 6= 0, however, as we shall discuss
in the last section, a certain type of elasticity is added into the Euler-α model, and the mean
motion of the fluid exhibits normal stress effects. Because of this, we may prescribe zero
velocity boundary conditions even in the inviscid limit, and thus extend the limit of zero
viscosity theorems for the averaged Euler equations to manifolds with boundary.

The following is the Euler-α version of Theorem 13.1 of [6].

Theorem 8.1 ([13]) Let S : TN s
µ(M) → TTN s

µ(M) be the Euler-α vector �eld. For each
s, let T : TeN s

µ(M)→ TeN s
µ(M) be a given map, where the integer σ ≥ 2, and assume that

T is a bounded linear map that generates a strongly-continuous semi-group Ft : TeN s
µ(M)→

TeN s
µ(M), t ≥ 0, and satis�es ‖Ft‖s ≤ eβt for some β > 0 and some s. Extend Ft to

TN s
µ(M) by

F̃t(Xη) = TRη · Ft · TRη−1(Xη)

for Xη ∈ TηN s
µ(M), and let T̃ be the vector �eld T̃ : TN s

µ(M)→ TTN s−σ
µ (M) associated to

the 
ow F̃t.
Then S + νT̃ generates a unique local uniformly Lipschitz 
ow on TN s

µ(M) for ν ≥ 0,
and the integral curves cν(t) with cν(0) = x extend for a �xed time τ > 0 independent of ν
and are unique. Further,

lim
ν→0

cν(t) = c0(t)

12



for each t, 0 ≤ t < τ , the limit being in the Hs topology, s > (n/2) + 1 + 2σ.

All of the results just stated for the subgroup N s
µ(M) also hold for the much simpler

case of H1
α geodesic motion on the subgroup of Dsµ(M) that keeps the boundary pointwise

fixed (see [8]).
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