Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Affiliates 
 Visitors 
 Students 
 Research 
 ICAM-LANL 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Colloquia 
 Colloquia Archive 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 CMS Colloquia 
 Q-Mat Seminars 
 Q-Mat Seminars Archive 
 P/T Colloquia 
 Archive 
 Kac Lectures 
 Kac Fellows 
 Dist. Quant. Lecture 
 Ulam Scholar 
 Colloquia 
 
 Jobs 
 Postdocs 
 CNLS Fellowship Application 
 Students 
 Student Program 
 Visitors 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Thursday, May 05, 2016
12:30 PM - 1:30 PM
T-DO Conference Room

Quantum Lunch

Compiling quantum gates

Jon Yard
Microsoft Research

Fault-tolerant quantum computers will compute by applying a sequence of elementary unitary operations, or gates, to an error-protected subspace. While algorithms are typically expressed over arbitrary local gates, there is unfortunately no known theory that can correct errors for a continuous set of quantum gates. However, theory does support the fault-tolerant construction of various finite gate sets, which, in some cases, generate circuits that can approximate arbitrary gates to any desired precision. In this talk, I will present joint work with Kliuchnikov, Bocharov and Roetteler on a framework for approximating arbitrary qubit unitaries over a very general but natural class of gate sets. These gate sets are derived from the theory of integral quaternions over number fields and generate S-arithmetic subgroups of SU(2). In this framework, the complexity of a unitary is algebraically encoded in the length of a corresponding quaternion. The algorithm achieves epsilon-approximations with circuits of length O(log(1/epsilon)), which is optimal up to constant factors.

Host: Rolando Somma