Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Affiliates 
 Visitors 
 Students 
 Research 
 ICAM-LANL 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Colloquia 
 Colloquia Archive 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 CMS Colloquia 
 Q-Mat Seminars 
 Q-Mat Seminars Archive 
 P/T Colloquia 
 Archive 
 Kac Lectures 
 Kac Fellows 
 Dist. Quant. Lecture 
 Ulam Scholar 
 Colloquia 
 
 Jobs 
 Postdocs 
 CNLS Fellowship Application 
 Students 
 Student Program 
 Visitors 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Thursday, June 20, 2013
2:00 PM - 3:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

Molecular Evolution and Dynamics in a Eukarytoic tRNA "Hot Pocket"

Julie Phillips
UC Merced

Patterns of substitution rates footprint functional constraints and highlight potential adaptive evolutionary change in macromolecules. The publication of twelve Drosophila genomes in 2007 facilitated one of the first highly resolved molecular evolutionary analyses of noncoding RNAs, specifically microRNAs. Yet, even though tRNAs were the first RNAs to be sequenced and structurally solved, detailed analysis of site rate variation of substitution in tRNAs has not yet been undertaken. A potential obstacle in undertaking such work is its requirement of orthology mapping, which is challenging for such short and repetitive genes. A recent publication of carefully curated tRNA orthology sets in Drosophila, in combination with modern computational tools, has enabled us to address detailed aspects of the evolution of tRNA structure and function. We analyzed evolutionary rates of individual sites and structural elements of tRNA in Drosophila. Three sites in the ‘variable pocket‘ of tRNAs show particularly rapid rates of evolution across different species and classes of tRNAs. These sites form part of a structurally important ion-binding pocket, often bound to Mg2+, but also other ions. We present results integrating these fly divergence data with yeast divergence data, fly polymorphism data, and molecular dynamics simulations to interpret this very surprising evolutionary pattern of eukaryotic tRNAs.