Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Affiliates 
 Visitors 
 Students 
 Research 
 ICAM-LANL 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Colloquia 
 Colloquia Archive 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 CMS Colloquia 
 Q-Mat Seminars 
 Q-Mat Seminars Archive 
 P/T Colloquia 
 Archive 
 Kac Lectures 
 Kac Fellows 
 Dist. Quant. Lecture 
 Ulam Scholar 
 Colloquia 
 
 Jobs 
 Postdocs 
 CNLS Fellowship Application 
 Students 
 Student Program 
 Visitors 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Monday, April 08, 2013
11:00 AM - 12:00 PM
***NOTE LOCATION*** Hot Rocks Conference Room (Los Alamos Research Park)

Seminar

Seamless Integration of Renewable Generation and Plug-in Electric Vehicles into the Electrical Grid

Soumya Kundu
University of Michgan, Ann Arbor

An imminent release of plug-in electric vehicles en masse will add substantial load to electrical power grids that are already operating near limits. Coordinated control of vehicle charging, however, can eliminate the need for expensive overhauls of grid infrastructure. Furthermore, the growing penetration of renewable energy sources provides an excellent opportunity to meet the increased electricity demand, but the challenge remains to tackle the variability and intermittency associated with renewable energy. Our research focuses on identifying and analyzing key issues regarding interactions between renewable generation, vehicle charging, and the power grid. In order to address these issues, we are designing control schemes that ensure seamless integration of newer forms of generation and load, while achieving satisfactory grid-level performance in areas such as loss minimization, voltage regulation, generation balancing and valley filling. We show how hysteresis-based control strategies can be utilized to model and control a large number of electrical loads, e.g. thermostatic loads, plug-in electric vehicle chargers. Our study shows that such load aggregations often display rich non-linear dynamic behavior such as period-multiplying bifurcations. We also look at how a synchronized response of vehicle chargers can impact the resiliency of electrical grid. Another interesting issue that we are looking at is optimal control of reactive power output from photovoltaic inverters on a radial distribution feeder, based upon only locally available measurements.

Host: Marian Anghel