Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Affiliates 
 Alumni 
 Visitors 
 Students 
 Research 
 ICAM-LANL 
 Publications 
 2007 
 2006 
 2005 
 2004 
 2003 
 2002 
 2001 
 2000 
 <1999 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Colloquia 
 Seminars 
 Quantum Lunch 
 CMS Colloquia 
 Archive 
 Kac Lectures 
 Dist. Quant. Lecture 
 Ulam Scholar 
 Colloquia 
 
 Jobs 
 Students 
 Summer Research 
 Graduate Positions 
 Visitors 
 Description 
 Services 
 General 
 PD Travel Request 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Wednesday, February 06, 2013
3:00 PM - 4:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

Probabilistic Programming

Nils Bertschinger
Max Planck Institute

Nowadays, many problems of artificial intelligence are formulated as probabilistic inference. Even though, standard inference algorithms are available, a lot of hand-crafting is required to turn a probabilistic model into code. Probabilistic programming is a powerful tool to specify probabilistic models directly in terms of a computer program. This can either be achieved by designing a specialized programming language for expressing probabilistic models or extending the semantics of an existing language.

In this talk, I will shortly explain the semantics underlying a probabilistic computation and discuss the implementation of different inference algorithms. Finally, I will present my Clojure library for probabilistic programming and show some examples of Bayes nets and Gaussian mixture models expressed as probabilistic programs.

Host: David Wolpert