Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Affiliates 
 Alumni 
 Visitors 
 Students 
 Research 
 ICAM-LANL 
 Publications 
 2007 
 2006 
 2005 
 2004 
 2003 
 2002 
 2001 
 2000 
 <1999 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Colloquia 
 Seminars 
 Quantum Lunch 
 CMS Colloquia 
 Archive 
 Kac Lectures 
 Dist. Quant. Lecture 
 Ulam Scholar 
 Colloquia 
 
 Jobs 
 Students 
 Summer Research 
 Graduate Positions 
 Visitors 
 Description 
 Services 
 General 
 PD Travel Request 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Thursday, July 19, 2012
11:00 AM - 12:30 PM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

Probabilistic solution of relative entropy weighted control

Jors Bierkins
Radboud Universiteut Nijmegen

We show that stochastic control problems with a particular cost structure involving a relative entropy term admit a purely probabilistic solution, without the necessity of applying the dynamic programming principle. The argument is as follows. Minimization of the expectation of a random variable with respect to the underlying probability measure, penalized by relative entropy, may be solved exactly. In the case where the randomness is generated by a standard Brownian motion, this exact solution can be written as a Girsanov density. The stochastic process appearing in the Girsanov exponent has the role of control process, and the relative entropy of the change of probability measure is equal to the integral of the square of this process. An explicit expression for the control process may be obtained in terms of the Malliavin derivative of the density process. The theory is applied to the problem of minimizing the maximum of a Brownian motion (penalized by the relative entropy), leading to an explicit expression of the optimal control law in this case. The link to linearization of the Hamilton-Jacobi-Bellman equation is made for the case of diffusion processes.

Host: Misha Chertkov