Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Affiliates 
 Alumni 
 Visitors 
 Students 
 Research 
 ICAM-LANL 
 Publications 
 2007 
 2006 
 2005 
 2004 
 2003 
 2002 
 2001 
 2000 
 <1999 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Colloquia 
 Seminars 
 Quantum Lunch 
 CMS Colloquia 
 Archive 
 Kac Lectures 
 Dist. Quant. Lecture 
 Ulam Scholar 
 Colloquia 
 
 Jobs 
 Students 
 Summer Research 
 Graduate Positions 
 Visitors 
 Description 
 Services 
 General 
 PD Travel Request 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Thursday, March 22, 2012
3:00 PM - 4:00 PM
T-DO Conference Room Bldg 123

Seminar

*** NOTE CHANGE IN PLACE AND TIME *** Streaming Models and Algorithms for Communication and Information Networks

Brian Thompson
Rutgers University

The last decade has seen a drastic change in the ways and rate at which people interact, and the technology available to observe and record these interactions. We have the ability to collect massive amounts of data: logs of emails, IP traffic, phone calls, SMS messaging, blog posts, and social media. The pervasiveness of communication and information networks in today's world necessitate the development of better models and techniques to address the challenges in efficiency and scalability that arise, and to leverage the temporal and relational information inherent in the data. In this work we present a data mining approach for analyzing streaming data from communication and information networks. We first build a stochastic model for a system of temporal processes, which we call the REWARDS (REneWal theory Approach for Real-time Data Streams) Model, and propose statistical methods to identify dependencies in the system. Applying this model to the network context, we develop efficient algorithms to identify anomalous activity, study information diffusion, and measure influence between entities. We demonstrate the usefulness of our approach with experiments on a variety of real-world data.

Host: Aric Hagberg, CNLS