Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Affiliates 
 Alumni 
 Visitors 
 Students 
 Research 
 ICAM-LANL 
 Publications 
 2007 
 2006 
 2005 
 2004 
 2003 
 2002 
 2001 
 2000 
 <1999 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Colloquia 
 Seminars 
 Quantum Lunch 
 CMS Colloquia 
 Archive 
 Kac Lectures 
 Dist. Quant. Lecture 
 Ulam Scholar 
 Colloquia 
 
 Jobs 
 Students 
 Summer Research 
 Graduate Positions 
 Visitors 
 Description 
 Services 
 General 
 PD Travel Request 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Wednesday, February 15, 2012
2:00 PM - 3:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

Optimal nonlinear approximations in computational science

Terry Haut
University of Colorado

It is well known that representing functions using optimal nonlinear approximations is much more efficient than using more standard linear methods (e.g., Fourier series, wavelets, ect.), especially for functions with singularities or sharp transition regions. However, standard algorithms for computing such optimal approximations don't always converge, and often require extended precision if high accuracy is desired. In this talk I will discuss a new fast and accurate algorithm for computing optimal rational approximations. A key tool behind computing such approximations is a new algorithm for computing small eigenvalues of certain structured matrices with high relative accuracy, which is impossible using standard eigenvalue methods. I will also present numerical applications of using optimal approximations for solving viscous Burgers equation with large Reynolds number, which demonstrate that optimal approximations can be a viable alternative to more standard linear methods in numerical analysis. Finally, I will discuss ongoing work for using optimal approximations to solve equations in quantum chemistry, where preliminary experiments suggest that using such approximations require a factor of 100-1000 fewer parameters than competing linear methods.

Host: Beth Wingate