Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Affiliates 
 Alumni 
 Visitors 
 Students 
 Research 
 ICAM-LANL 
 Publications 
 2007 
 2006 
 2005 
 2004 
 2003 
 2002 
 2001 
 2000 
 <1999 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Colloquia 
 Seminars 
 Quantum Lunch 
 CMS Colloquia 
 Archive 
 Kac Lectures 
 Dist. Quant. Lecture 
 Ulam Scholar 
 Colloquia 
 
 Jobs 
 Students 
 Summer Research 
 Graduate Positions 
 Visitors 
 Description 
 Services 
 General 
 PD Travel Request 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Thursday, March 10, 2011
10:00 AM - 11:00 AM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

Differential geometry and the universality of cost landscapes in nonlinear least squares fits

Mark Transtrum
Laboratory of Atomic and Solid State Physics, Cornell University

Fitting model parameters to experimental data by least squares minimization is an ubiquitous problem in science that can be notoriously difficult for nonlinear models with many parameters. The problem, however, has an elegant geometric interpretation: the set of all possible model parameters induce a manifold in data space, with the best fit being the point on the manifold closest to the data. We discover that a wide variety of nonlinear fits have model manifolds that share common, universal features: they all have hierarchy of widths (spanning many orders of magnitude) and relatively small extrinsic curvatures. We explain both widths and curvatures using theorems from interpolation theory. The corresponding cost landscape is a hierarchy of narrow canyons and broad flat plateaus. Most fitting difficulties are understood to be algorithms stalling as they approach the boundaries on the manifold, i.e. being lost on the plateaus. Algorithms additionally become sluggish when the coordinates on the manifold are poorly suited to describing model behavior, i.e. when the canyons are curved. We use our geometrical insights to improve the standard fitting method (the Levenberg-Marquardt algorithm) by adding a geodesic acceleration term to the usual step, and find significant increases in both efficiency and success rates at finding best fits.

Host: Misha Chertkov, chertkov@lanl.gov, 665-8119