Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Affiliates 
 Visitors 
 Students 
 Research 
 ICAM-LANL 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Colloquia 
 Colloquia Archive 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 CMS Colloquia 
 Q-Mat Seminars 
 Q-Mat Seminars Archive 
 P/T Colloquia 
 Archive 
 Kac Lectures 
 Kac Fellows 
 Dist. Quant. Lecture 
 Ulam Scholar 
 Colloquia 
 
 Jobs 
 Postdocs 
 CNLS Fellowship Application 
 Students 
 Student Program 
 Visitors 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Monday, May 16, 2011
3:00 PM - 4:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Colloquium

Secrets of swimming in sand

Daniel Goldman
Georgia Tech

I will summarize our recent progress in experiments and models of the locomotion of a sand-swimming lizard, the sandfish (/Scincus scincus/). We use high speed x-ray imaging to study how the 10 cm-long sandfish swims at 2 body-lengths/sec within sand, a granular material that displays solid and fluid-like behavior. Below the surface the lizard no longer uses limbs for propulsion but generates thrust to overcome drag by propagating an undulatory traveling wave down the body. To predict sandfish swimming speed in the granular ``frictional fluid", we develop an empirical resistive force model by measuring drag force on a small cylinder oriented at different angles relative to the displacement direction and summing these forces over the animal movement profile. The model correctly predicts the animal's wave efficiency (ratio of forward speed to wave speed) as approximately 0.5. The empirical model agrees with a more detailed numerical simulation: a multi-segment model of the sandfish coupled to a multi-particle Molecular Dynamics simulation of the granular medium. We use the principles discovered to construct a sand-swimming physical model (a robot) which, like in our empirical and multi-particle numerical model, swims fastest using the preferred sandfish wave pattern.

Host: Cristiano Nisoli, T-4, CNLS, cristiano@lanl.gov