Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Affiliates 
 Alumni 
 Visitors 
 Students 
 Research 
 ICAM-LANL 
 Publications 
 2007 
 2006 
 2005 
 2004 
 2003 
 2002 
 2001 
 2000 
 <1999 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Colloquia 
 Seminars 
 Quantum Lunch 
 CMS Colloquia 
 Archive 
 Kac Lectures 
 Dist. Quant. Lecture 
 Ulam Scholar 
 Colloquia 
 
 Jobs 
 Students 
 Summer Research 
 Graduate Positions 
 Visitors 
 Description 
 Services 
 General 
 PD Travel Request 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Wednesday, February 23, 2011
11:00 AM - 12:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

Spacetime could be simultaneously continuous and discrete in the same way that information can be

Achim Kempf
University of Waterloo

There are competing schools of thought about the question of whether spacetime is fundamentally either continuous or discrete. Here, we consider the possibility that spacetime could be simultaneously continuous and discrete, in the same mathematical way that information can be simultaneously continuous and discrete. The equivalence of continuous and discrete information, which is of key importance in information theory, is established by Shannon sampling theory: of any bandlimited signal it suffices to record discrete samples to be able to perfectly reconstruct it everywhere, if the samples are taken at a rate of at least twice the bandlimit. It is known that physical fields on generic curved spaces obey a sampling theorem if they possess an ultraviolet cutoff. Most recently, methods of spectral geometry have been employed to show that also the very shape of a curved space (i.e., of a Riemannian manifold) can be discretely sampled and then reconstructed up to the cutoff scale. Here, we develop these results further, and we here also consider the generalization to curved spacetimes, i.e., to Lorentzian manifolds.

Host: Alexander Gutfraind, gfriend@lanl.gov