Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Affiliates 
 Alumni 
 Visitors 
 Students 
 Research 
 ICAM-LANL 
 Publications 
 2007 
 2006 
 2005 
 2004 
 2003 
 2002 
 2001 
 2000 
 <1999 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Colloquia 
 Seminars 
 Quantum Lunch 
 CMS Colloquia 
 Archive 
 Kac Lectures 
 Dist. Quant. Lecture 
 Ulam Scholar 
 Colloquia 
 
 Jobs 
 Students 
 Summer Research 
 Graduate Positions 
 Visitors 
 Description 
 Services 
 General 
 PD Travel Request 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Wednesday, January 19, 2011
10:00 AM - 11:00 AM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

High-Order Curvilinear Finite Elements for Lagrangian Hydrodynamics

Veselin A. Dobrev (speaker), Tzanio V. Kolev, and Robert N. Rieben
Lawrence Livermore National Laboratory

In this talk, we present a general framework for high-order Lagrangian discretization of the compressible shock hydrodynamics equations using curvilinear finite elements in 2D, 3D and axisymmetric geometries. Our method is derived through a variational formulation of the momentum and energy conservation equations using high-order continuous finiteq elements for the velocity and position, and high-order discontinuous basis for the internal energy field. In particular, high-order position values enable curvilinear zone geometries allowing for better approximation of the mesh curvature which develops naturally with the flow. The semi-discrete equations involve velocity and energy 'mass matrices' which are constant in time due to our notion of strong mass conservation. We also introduce the concept of generalized corner force matrices, which together with the strong mass conservation principle, imply the exact total energy conservation on a semidiscrete level. The fully-discrete equations are obtained by the application of Runge Kutta-like energy conserving time stepping scheme. We present a number of 2D, 3D and axisymmetric computational results demonstrating the benefits of the high-order approach for Lagrangian computations, including improved robustness and symmetry preservation, significant reduction in mesh imprinting, and high-order convergence for smooth problems.

Host: Mikhail Shashkov. shashkov@lanl.gov, 667-4400