Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Affiliates 
 Alumni 
 Visitors 
 Students 
 Research 
 ICAM-LANL 
 Publications 
 2007 
 2006 
 2005 
 2004 
 2003 
 2002 
 2001 
 2000 
 <1999 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Colloquia 
 Seminars 
 Quantum Lunch 
 CMS Colloquia 
 Archive 
 Kac Lectures 
 Dist. Quant. Lecture 
 Ulam Scholar 
 Colloquia 
 
 Jobs 
 Students 
 Summer Research 
 Graduate Positions 
 Visitors 
 Description 
 Services 
 General 
 PD Travel Request 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Wednesday, August 18, 2010
2:00 PM - 3:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

Shock Induced Jamming and Fracture at Particulate Interfaces

Mahesh Bandi
Harvard University

A monolayer of hydrophobic particles at the air-water interface exhibits properties of a two-dimensional solid under compression. Localized surfactant introduction on such monolayers causes dynamical fracture due to stresses exerted by the advancing surfactant. Here we experimentally demonstrate a radially divergent particulate shock emerges from the point of surfactant introduction. Using similarity solutions that predict $t^{3/4}$ scaling for an advancing surfactant on the surface of a deep fluid, we experimentally show the particulate shock travels with the Thoreau-Reynolds ridge. The shock induces particulate compaction in its wake which increases until the particles jam into a disordered,two-dimensional solid. Fracture occurs when the compaction band\'s packing fraction saturates at random close packed density $\\phi_{RCP}$ and gives rise to nearly regular, triangle shaped cracks with robust geometrical features. The number of cracks $N$ varies monotonically with the initial particulate packing fraction $\\phi_{init}$. Whereas the compaction band\'s radius $R^*$ at fracture onset also exhibits similar monotonic dependence on $\\phi_{init}$, its width $W^*$ shows no such dependence. By treating the compaction band as a rigid, elastic annulus, and invoking mass conservation, we show $N \\sim R^*/W^* = 2\\phi_{RCP}/\\phi_{init}$ and verify it experimentally over a range of initial packing fractions ($0.1 \\le \\phi_{init} \\le 0.64$

Host: Robert Ecke