Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Affiliates 
 Alumni 
 Visitors 
 Students 
 Research 
 ICAM-LANL 
 Publications 
 2007 
 2006 
 2005 
 2004 
 2003 
 2002 
 2001 
 2000 
 <1999 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Colloquia 
 Seminars 
 Quantum Lunch 
 CMS Colloquia 
 Archive 
 Kac Lectures 
 Dist. Quant. Lecture 
 Ulam Scholar 
 Colloquia 
 
 Jobs 
 Students 
 Summer Research 
 Graduate Positions 
 Visitors 
 Description 
 Services 
 General 
 PD Travel Request 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Wednesday, August 23, 2006
10:00 AM - 11:00 AM
CNLS Conference Room

Seminar

A Cell-Centered Diffusion Scheme on Two-Dimensional Unstructured Meshes

Pierre-Henri Maire
UMR CELIA CEA--CNRS--Universite Bordeaux

We present a new cell-centered diffusion scheme on unstructured mesh. The main feature of this scheme lies in the introduction of two half normal fluxes and two temperatures on each edge. A local variational formulation written for each corner cell provides the discretization of the half normal fluxes. This discretization yields a linear relation between the half normal fluxes and the temperatures defined on the two edges impinging on a node. The continuity of the half normal fluxes written for each edge around a node leads to a linear system. Its resolution enables to eliminate locally the edge temperatures in function of the mean temperature in each cell. By this way, we obtain a small symmetric positive definite matrix located at each node. Finally, by summing all the nodal contribution, one gets a linear system satisfied by the cell-centered unknowns. This system is characterized by a symmetric positive definite matrix. We show numerical results on various test cases which exhibit the good behavior of this new scheme. First, it preserves the linear solutions on triangular mesh. It reduces to a classical five points scheme on rectangular grids. For non-orthogonal quadrangular grids we obtain an accuracy which is almost second order on smooth meshes.

Host: Mikhail Shashkov