Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Affiliates 
 Visitors 
 Students 
 Research 
 ICAM-LANL 
 Publications 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Colloquia 
 Colloquia Archive 
 Seminars 
 Postdoc Seminars Archive 
 Quantum Lunch 
 Quantum Lunch Archive 
 CMS Colloquia 
 Q-Mat Seminars 
 Q-Mat Seminars Archive 
 P/T Colloquia 
 Archive 
 Kac Lectures 
 Kac Fellows 
 Dist. Quant. Lecture 
 Ulam Scholar 
 Colloquia 
 
 Jobs 
 Postdocs 
 CNLS Fellowship Application 
 Students 
 Student Program 
 Visitors 
 Description 
 Past Visitors 
 Services 
 General 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Wednesday, February 10, 2010
1:00 PM - 2:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

State and parameter estimation of deterministic or stochastic nonlinear systems

Jack Quinn
University of California, San Diego

A main goal in science is to combine theoretical models with observations to learn something about the system under investigation. I will discuss a way to use measured data to estimate model parameters and states that cannot be directly measured. I will explain why state and parameter estimation is difficult in nonlinear systems, and show how synchronization of the model to the data stream can be used to reduce the difficulty. I will then move on to the stochastic case where a noise term is added to the model, and show how to formulate the probability distribution of the states and parameters of the model, conditioned on the observed data. State and parameter estimates can then be calculated, including uncertainties, by using a Monte Carlo integration method to evaluate path integrals through state and parameter space with the conditional probability distribution as a weight factor. I will also address the issue of how to find the number of observations required for a particular model.

Host: Robert Ecke