Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Affiliates 
 Alumni 
 Visitors 
 Students 
 Research 
 ICAM-LANL 
 Publications 
 2007 
 2006 
 2005 
 2004 
 2003 
 2002 
 2001 
 2000 
 <1999 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Colloquia 
 Seminars 
 Quantum Lunch 
 CMS Colloquia 
 Archive 
 Kac Lectures 
 Dist. Quant. Lecture 
 Ulam Scholar 
 Colloquia 
 
 Jobs 
 Students 
 Summer Research 
 Graduate Positions 
 Visitors 
 Description 
 Services 
 General 
 PD Travel Request 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Wednesday, September 12, 2007
10:00 AM - 11:00 AM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

Ergodicity Breaking in the Continuous Time Random Walk

Golan Bel
University of California at Santa Barbara

The continuous-time random walk (CTRW) model exhibits a non-ergodic phase when the average waiting time diverges. The open question is, what statistical mechanical theory replaces the canonical Boltzmann-Gibbs theory in this case? Using an analytical approach for the non-biased and the uniformly biased CTRWs, and numerical simulations for the CTRW in a potential field, we obtain the nonergodic properties of the random walk which show strong deviations from Boltzmann-Gibbs theory [1,2]. We derive the distribution function of occupation times in a bounded region of space which, in the ergodic phase recovers the Boltzmann-Gibbs theory, while in the non-ergodic phase yields a generalized non-ergodic statistical law. In particular we show that in the non-ergodic phase the distribution of the occupation time of the particle in a finite region of space approaches U- or W-shaped distributions related to the arcsine law. When conditions of detailed balance are applied, these distributions depend on the partition function of the problem, thus establishing a relation between the non-ergodic dynamics and canonical statistical mechanics. The relation of our work to single-molecule experiments is briefly discussed. [1] G. Bel and E. Barkai, Phys. Rev. Lett., 94, 240602 (2005). [2] G. Bel and E. Barkai, Phys. Rev. E, 73, 016125 (2006).