Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Affiliates 
 Alumni 
 Visitors 
 Students 
 Research 
 ICAM-LANL 
 Publications 
 2007 
 2006 
 2005 
 2004 
 2003 
 2002 
 2001 
 2000 
 <1999 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Colloquia 
 Seminars 
 Quantum Lunch 
 CMS Colloquia 
 Archive 
 Kac Lectures 
 Dist. Quant. Lecture 
 Ulam Scholar 
 Colloquia 
 
 Jobs 
 Students 
 Summer Research 
 Graduate Positions 
 Visitors 
 Description 
 Services 
 General 
 PD Travel Request 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Monday, August 20, 2007
4:00 PM - 4:30 PM
CNLS Conference Room (TA-3, Bldg 1690)

Seminar

Two-phase flow simulation using the level set method

Christos N. Kavouklis
University of Texas at Austin

A recent in Computational Fluid Dynamics is the study of flows involving more than one fluid. Of particular importance in this kind of flow is the correct representation of the interface among different fluids at each step of the simulation process. In this work we are using the level set method to correctly locate the interface shared by two different fluids. In the level set methodology the interface is represented as the zero level set of a smooth function that satisfies a simple advection equation. This approach allows for easy computation of geometric and physical quantities of interest, such as interface curvature and surface tension.

Our starting point in this investigation is the implementation of a 2D pressure-correction finite difference incompressible Navier-Stokes solver. As a validation study of the developed algorithm we have considered the classical driven cavity flow at Reynolds number 10, 100 and 1000. The second part of this research is devoted to the application of our numerical scheme to the case of two fluids. Several representative case studies are included to evaluate the method. Specifically, we consider the classical reversible vortex problem and motion of an air bubble in a fluid subject to a gravitational field.