
Polymer in a Random Flow with Mean Shear

We discuss here the statistics of polymers placed
in a chaotic flow with a relatively large mean shear,
that is the flow of the type correspondent to the elas-
tic turbulence experiments by Groisman & Steinberg
(2000,2001,2004). We assume that the effect of ve-
locity fluctuations is stronger than that related to
thermal noise, and that polymers are essentially elon-
gated so that the polymer orientation is well defined.
The main body of the orientational fluctuations occur
in a neighborhood of a special direction preferred by
the shear. Sometimes the typical fluctuations are in-
terrupted by flips, in which the polymer orientation is
reversed. The task of this study is to describe statis-
tics of the angular orientation and tumbling time as
well as statistics of the polymer extension. We estab-
lish the main features of the PDFs for the objects.

Model. We consider a single polymer molecule ad-
vected by a chaotic/turbulent flow (i.e. the polymer
moves along a Lagrangian trajectory of the flow) and
is stretched by velocity inhomogeneity. The poly-
mer stretching is characterized by the molecule’s end-
to-end separation vector, R, satisfying the following
dumb-bell-like equation:

∂tRi = Rj∇jvi − γ(R)Ri + ζi . (1)

Here γ is the polymer relaxation rate and ζi is the
Langevin force. The velocity gradient ∇jvi is taken
at the molecule position. The velocity difference be-
tween the polymer end points is approximated in Eq.
(1) by the first term of its Taylor expansion in the
end-to-end vector. It is justified if the polymer size is
less than the velocity correlation length. The relax-
ation rate γ in Eq. (1) is a function of the extension R
which varies from zero upto a maximum value Rmax

corresponding to a fully stretched polymer. We as-
sume that the relaxation is Hookean for R � Rmax,
i.e. γ(R) is well approximated by a constant γ(0)
there, while it diverges (the polymer becomes stiff)
for R → Rmax.

We focus on the situation in which the effect of
velocity fluctuations is stronger than that of thermal
fluctuations, so that the Langevin force ζ in Eq. (1)
can be neglected. We consider the case in which the
steady shear flow is accompanied by weaker random
velocity fluctuations. This is also the setting real-
ized in the elastic turbulence experiments by Grois-
man & Steinberg (2000,2001,2004). We choose the
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Figure 1: Scheme explaining polymer orientation ge-
ometry.

coordinate frame associated with the shear flow, as
shown in Fig. 1, where the mean flow is charac-
terized by the shear velocity (sy, 0, 0) and s is posi-
tive. Then the polymer end-to-end vector R is conve-
niently parameterized by the spherical angles φ and θ:
Rx = R cos θ cos φ, Ry = R cos θ sin φ, Rz = R sin θ.

We focus on the situation in which the effect of
velocity fluctuations is stronger than that of ther-
mal fluctuations, so that the Langevin force ζ in
Eq. (1) can be neglected. We consider the case
in which the steady shear flow is accompanied by
weaker random velocity fluctuations. This is also
the setting realized in the elastic turbulence exper-
iments by Groisman & Steinberg (2000,2001,2004).
We choose the coordinate frame associated with the
shear flow, as shown in Fig. 1, where the mean flow
is characterized by the shear velocity (sy, 0, 0) and
s is positive. Then the polymer end-to-end vector
R is conveniently parameterized by the spherical an-
gles φ and θ: Rx = R cos θ cos φ, Ry = R cos θ sin φ,
Rz = R sin θ. In terms of these variables, Eq. (1)
(with the Langevin term omitted) transforms into the
following set of equations:

∂tφ = −s sin2 φ + ξφ , (2)
∂tθ = −s sin φ cos φ sin θ cos θ + ξθ , (3)
∂t ln R = −γ(R) + s cos2 θ cos φ sin φ + ξ‖ ,(4)

where ξφ, ξθ and ξ‖ are random variables related to
the fluctuating component of the velocity gradient.

Angular statistics. The statistics of the velocity
fluctuations is assumed to be homogeneous in time.
In a statistically stationary velocity field, the angular
statistics is stationary as well, being characterized by
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the joint PDF, P(φ, θ), which is a periodic function of
the angles with the period π for both φ and θ. Thus,
it is sufficient to consider P(φ, θ) within the follow-
ing bounded domain (torus), −π/2 < φ, θ < π/2.
According to Eqs. (2,3), P(φ, θ) is symmetric with
respect to θ but it is not symmetric with respect to
φ. Therefore, the average value of φ, φt = 〈φ〉, is
non-zero. In our setting, φt is positive. The value
of φt can be estimated by balancing the determin-
istic and stochastic terms on the right hand side of
Eq. (2). The weakness of the random term in com-
parison with s implies φt � 1. The same quantity
φt estimates typical fluctuations of φ about its mean
value. It immediately follows that the typical value
of θ fluctuations is estimated by φt as well.

It is natural to expect that the Lagrangian veloc-
ity correlation time is λ̄−1 = [sφt]−1, that is also a
characteristic time of the ξφ and ξθ variations. Then,
comparing the left hand sides of Eqs. (2,3) with the
first terms on their right hand sides (for φ, θ � 1),
one concludes that the angular correlation time can
be estimated by the same quantity λ̄−1 = (sφt)−1.
Next, equating the terms on the right hand sides of
Eqs. (2,3), one derives ξφ ∼ ξθ ∼ sφ2

t � s. The
last inequality reflects the assumed weakness of the
velocity gradient fluctuations compared to the shear
rate, s.

Tails of the angular PDFs. One finds two differ-
ent contributions to the PDF tail: one is related
to the deterministic motion while the other is asso-
ciated with the stochastic evolution in the domain,
|φ| < φt, |θ| � φt. For 1 � |θ| � φt, both contribu-
tions are algebraic, ∝ |θ|−2 and ∝ |θ|−a, respectively.
The deterministic contribution, ∝ |θ|−2, dominates
if a > 2, while the stochastic contribution, ∝ |θ|−a,
dominates otherwise.

Tumbling time statistics. The deterministic
process, which defines the polymer turn (because φ
changes essentially only during the deterministic part
of the dynamics), is faster than the stochastic wan-
dering taking place at small angles, |φ|, |θ| ∼ φt.
Therefore it is convenient to define the tumbling time,
τ , as the time separating two subsequent crossings in
φ of the special angle ±π/2, in the middle of the de-
terministic domain. Since the major contribution to
τ originates from the stochastic wandering in the φt-
narrow vicinity of φ = 0, the position of the τ -PDF
maximum and its width are both estimated by the
correlation time (sφt)−1, because this is the only rel-
evant characteristic time of the stochastic evolution.

Considering the PDF tail for τ � λ̄−1, one ob-
serves that if a flip does not occur for a long time,

then this delay can be interpreted in terms of the
large number, λ̄τ , of independent unsuccessful at-
tempts to pass (clock-wise in φ) the stochastic do-
main |φ| < φt. The probability of the delayed flip is
given by the product of the probabilities of these λ̄τ
events, resulting in lnPτ ∼ −λ̄τ , for τ � λ̄−1.

Polymer extension statistics. To illustrate our
generic analytical results, that are explained in de-
tails in [2], we plot in Fig. 2 four graphs of the exten-
sion PDF obtained by numerical simulations in a sim-
ple model flow done with γ(R) = γ(0)/(1−R2/R2

max),
corresponding to the so-called FENE-P model of the
polymer elasticity.
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Figure 2: PDF of the polymer extension, R, mea-
sured in the units of maximal extension, for different
values of the Weissenberg number, Wi , obtained from
numerical simulations explained in [2].
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