
Phenomenology of Rayleigh-Taylor Turbulence

If a heavy fluid lies above a light one, the gravity-
driven Rayleigh-Taylor (RT) instability develops. At
later stages, this unstable flow becomes turbulent.
The most striking feature of RT turbulence is the
formation of a turbulent mixing zone of width L that
grows quadratically with time:

L ≈ αAgt2 . (1)

Here, A is the Atwood number, related to the fluid
densities ρ1,2 by A ≡ (ρ1 − ρ2)/(ρ1 + ρ2), and g is
the acceleration of gravity. The law (1) was observed
in many numerical and laboratory experiments. Nu-
merical and experimental values of the dimensionless
coefficient α in Eq. (1) vary from 0.02 to 0.07.

Recently we proposed a phenomenological theory
explaining the hierarchy of scales and the spectra of
velocity and density fluctuations in a specific regime
of 3d RT turbulence: for low A (i.e., in the Boussi-
nesq approximation) and for miscible fluids [1]. The
theory is based on the law (1) and also on a common
feature of multi-scale organization in hydrodynamic
turbulence, viz., that small scales adjust adiabatically
to changes in large scale characteristics. The phe-
nomenology predicts that, in the wide range of scales
between the integral scale, L, and the viscous scale, η,
energy cascades down scale (as observed numerically
and experimentally) and the Kolmogorov estimate for
the velocity increment (difference),

δvr ∼ (εr)1/3 , (2)

holds. Here ε is the energy flux per unit mass,
ε ∼ A2g2t, which grows linearly with time. It was
shown in Ref. [1] that the Kolmogorov scenario is
self-consistent, in the sense that even though the RT
turbulence is buoyancy driven at scales ∼ L, the ef-
fect of buoyancy on turbulence becomes irrelevant at
smaller scales, r ¿ L. This self-consistent logic is
an adaptation (to the RT turbulence setting) of the
Shraiman-Siggia arguments, introduced in the con-
text of Boussinesq convection. The phenomenology
also predicts that the viscous scale η decreases with
time as

η ∼
(

ν3

A2g2t

)1/4

, (3)

where ν is the kinematic viscosity. Comparing Eq.
(1) and Eq. (3) one finds that the turbulent de-
scription is self-consistent, i.e., L À η, for t À
ν1/3A−2/3g−2/3.

It is clear that the adiabatic and Kolmogorov-like
arguments leading to the estimate (2) are not re-
stricted to the miscible case considered in Ref. [1].
In particular, the general argument suggests that the

Kolmogorov picture also holds within some range of
scales for the immiscible case. In this case, however,
surface tension should play an essential role in the
mixing zone. Thus the problem addressed in the re-
cent paper [2] was to identify and study phenomena
related to surface tension.

We examined in [2] the dynamics of two immiscible
fluids when the heavier fluid is placed initially above
the lighter one. This configuration leads to RT insta-
bility, which eventually develops into RT turbulence.
The size of the turbulent mixing zone (and thus the
amount of fluid entrained in the turbulent motion)
grows according to Eq. (1). Hydrodynamic motion
at scales ∼ L is driven by buoyancy. At smaller scales
the direct (i.e., directed towards smaller scales) cas-
cade of (kinetic) energy is realized, leading to the
estimate (2). The cascade is accompanied by mutual
penetration of the fluids, which is initiated by the in-
jection of pure fluid jets into the mixing zone. The
collision of jets of different fluids produces complex
(fractal) interfacial structures. Drops of both types
are permanently shed from the interface; the result
is the creation of an emulsion-like state. A schematic
view of a snapshot taken inside the mixing zone, il-
lustrating the density distribution, is shown in Fig.
1. Notice that the exact shapes of the drops are by
no means fixed, as fluctuations in the local radius
of curvature of the interface are of the order l, i.e.,
the typical drop size. Surface tension does not allow
drops to have size much smaller than l.

If the typical drop size is larger than the viscous
scale, l À η, then l can be estimated to be the scale
where the kinetic energy density of the fluids, %(δvl)2,
and the interfacial energy density, σ/l, are of the same
order:

l ∼
(

σ3

A4%3g4t2

)1/5

, (4)

where % is the mean mass density, % = (ρ1 + ρ2)/2,
and σ is the surface tension coefficient. According
to Eq. (4), the characteristic drop size l decreases
with time t, generating an emulsion that is progres-
sively more dispersed. Dynamically, the permanent
decrease in the typical drop size is realized through
creation (shedding) of new drops as well as through
breakup of already existing drops into smaller ones.
The estimate (4) is correct provided that the scale l
is much smaller than L; this requirement corresponds
to the condition

t À
(

σ

A3%g3

)1/4

. (5)

This inequality emphasizes that at large scales, ∼
L, gravity overcomes surface tension (which tends to
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Figure 1: Schematic view of the mass distribution
snapshot. Different mass densities are marked as
grey/light and white/heavy, respectively. Circular
domains bounded by dashed lines correspond to re-
gions dominated by heavy and light (fluids. Density
distribution within any of the domains is not homo-
geneous: drop-rich (emulsion) regions alternate with
drop-free regions. Arrows indicate mean direction of
the flow in the corresponding regions. Drops are shed
from single-phase tongues possessing fractal shape.
The inset on the top of the Figure illustrates that sur-
faces of the drops are populated by capillary waves.

stabilize the RT instability). Another condition, l À
η, results in

t ¿ t0, t0 =
σ4

A2%4g2ν5
. (6)

This inequality means that the Kolmogorov cascade
is insensitive to viscosity at scales ∼ l. We assume
that the inequalities (5) and (6) are compatible, thus
leading to the condition σ3 À A%3gν4.

If t ¿ t0, the drop size, l, lies in between the inte-
gral scale, L, and the viscous scale, η. In the range
of scales bounded from above by L and from below
by l, the Kolmogorov in-volume cascade is realized.
One finds that at smaller scales, r < l, turbulence
inside and outside drops is also of the Kolmogorov
type. As far as dynamics on the interface (surfaces
of the drops) is concerned, we claim that a turbulent
cascade of capillary waves takes place. The capil-
lary wave dynamics opens an additional channel for
energy transfer to small scales. The energy flux, com-
ing from the integral scale L, splits in two parts at
the scale l: a part of the energy cascades further (to-
wards η) in the bulk (the mechanism being equiv-
alent to that for single-phase turbulence) while the
remainder (which is roughly of the same order as the
volume part) feeds capillary fluctuations, giving rise
to the capillary wave energy cascade at the surfaces
of drops.

Capillary waves are excited at the scale l by the in-
ertial motion; then capillary wave interactions lead to
the formation of a cascade. The cascade is of a weak
turbulence kind, i.e., the roughness (degree of non-
flatness) of the interface decreases with scale. There-

fore, zoomed at the scale r ¿ l, the interface can be
viewed as an almost flat one populated by capillary
waves. Such zoomed portion of the interface is shown
schematically as an inset in Figure 1. The fluctuation
spectra for the capillary wave cascade were derived
by Zakharov and co-workers. Using their results, one
finds that the pair correlation function of the wave-
generated velocity field, measured at two points on
the interface lying distance r apart from each other,
is

〈v(R)v(R + r)〉 ∼ (εl)2/3(l/r)1/4 . (7)

The typical surface elevation between the two points
is estimated as hr ∼ r(r/l)3/8. Therefore, the typical
slope, hr/r, characterizing an effective nonlinearity of
the problem, decreases with the scale. This estimate
confirms that the wave turbulence at the interface
is weak. It is also straightforward to check that the
nonlinear interaction time at the scale r within the
wave turbulence range decreases with scale, ∝ r3/4,
thus making our adiabatic description well justified.
We also find that velocity fluctuations induced by the
capillary waves (7) are stronger than respective fluc-
tuations in the bulk. Therefore, the interface turbu-
lence is insensitive to fluctuations in the bulk. On the
other hand, velocity fluctuations at a scale r gener-
ated by surface waves become negligible beyond dis-
tance r from the interface. This explains why turbu-
lent fluctuations in the bulk are insensitive to fluc-
tuations at the interface. The capillary waves are
dissipated at the scale r0 = %ν2/σ. One concludes
that the capillary wave interval, bounded by l from
above, by r0 from below and containing η scale in
between, shrinks with time, so that the three scales
become comparable at t0. Later on, for t À t0,
the characteristic drop size l becomes smaller than
η, which, in turn, becomes smaller than r0. There-
fore, the capillary cascade is absent at this stage. The
scale l emerges now as the result of a balance between
the capillary force: l ∼ σ(A%g

√
νt)−1, which guaran-

tees that the capillary scale decreases with time faster
than the viscous scale.
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