Adaptability and “intermediate phases” in randomly connected
networks

We consider an assembly of atoms, with a cer-
tain number of bonds between them that impose con-
straints on the relative positions of the atoms. If there
are few bonds, the network is easily deformed: it is
in the “floppy”, or underconstrained, phase; if there
are many bonds, any deformation requires stretching
or bending bonds: this is the “rigid”, or overcon-
strained, phase. In between these two regimes lies
the rigidity transition. Rigidity theory, developed by
Phillips [1] and Thorpe [2], has proved to be very
successful during the last two decades in describing
a variety of covalent glasses: signatures of the rigid-
ity transition have been found by varying the com-
position of the glass. More recently, in a series of
experiments, Boolchand et al. [3] showed that the
phenomenology can be more complex than expected
around the transition: they identified an intermedi-
ate phase between the floppy and rigid ones, and thus
two transitions instead of one. Fig. 1 provides such
an example for the Si,Se;_, compound. A similar
phase diagram with two transitions has been found
now in numerous different compounds.
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Figure 1: The non-reversible part of the heat flow
AH,, across the glass transition for Si,Se;_, com-
pounds, varying the Si concentration. AH,, almost
vanishes in a composition window defining the in-
termediate phase. Experiments by Selvanathan et
al. [3].

Thorpe et al. [4] attributed this behavior to the
possibility of self-organization of the network; that is,
the bonds are not distributed randomly, and the net-
work can adapt itself to lower the stress due to over-
constrained regions. Micoulaut and Phillips then an-
alyzed the local and medium range structure of such
self-organizing networks by growing clusters (Size In-
creasing Cluster Analysis) [5]. Our aim here is to

provide a solvable minimal model for the intermediate
phase and the two phase transitions; the only ingre-
dients are a network undergoing a rigidity transition,
and the adaptability of the network, to avoid stress.
We consider N atoms of two different types: N7 with
coordination 1 and N3 with coordination 3. In order
to keep the model solvable, we consider that these
atoms are randomly bonded together; Fig. 2 gives an
example of such a network. Without the adaptability
ingredient, this system undergoes a standard rigidity
transition, between a floppy and a rigid phase, when
the fraction 3 = N3/N of 3-atoms is increased, see
Fig. 3, where N = Ny + Ns.
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Figure 2: Example of a network formed with 3-atoms
(blue) and 1-atoms (red).

We now introduce the adaptability in the network
as follows. When a new bond is added to the network,
it can reduce the number of degrees of freedom, or
create redundancies (or both). In the presence of re-
dundancies, some constraints cannot be fulfilled: this
creates stress in the network and costs some energy.
Thus we introduce an energy for the system defined as
the number of redundant constraints in the network:
H = N,.q. The network now tends to adapt itself
to avoid creating too many redundant constraints;
however, this adaptation, pushing the network away
from the completely random situation, costs entropy.
A balance between the two effects is then achieved.
To have a measure of how much the system adapts,
or how far it is from the maximally random case, we
introduce the a parameter, defined as the ratio of the
number of bonds between two 1-atoms Ni; and the
number of bonds between two 1l-atoms in the max-
imally random case Ny: a = Ni1/N7y. Thus, any
value of a different from one denotes some organiza-
tion in the network.

This model can be solved approximately, and the
analytical findings are shown in Fig. 3, along with the
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results of Monte Carlo simulations. At low concen-
tration x3 of 3-atoms, there are very few redundant
constraints, so the system does not need to adapt,
and the energetic and entropic contributions are op-
timized in the completely random a = 1 case: this is
the floppy phase. Increasing x3, the completely ran-
dom configuration costs too much energy, so the net-
works adapts (a # 1), and manages to avoid almost
all redundancies, as the straight line for the number
of floppy modes indicates: this is the intermediate
phase. Increasing x3 further, the system reaches a
point where it costs too much entropy to avoid all
redundancies; some constraints are not fulfilled, as
indicated by the change in slope of the number of
floppy modes: this is the stressed rigid phase.
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Figure 3: Rigidity transition with adaptability. Num-
ber of floppy modes and parameter a as a function of
the composition. The lines are the two analytical cal-
culations, the solid line taking more accurately into
account the correlations in the network. Symbols are
Monte Carlo results.

Here we have augmented a standard rigidity model
with an additional ingredient: the possibility for the
network to adapt, in order to avoid stress. We no-
tice that these very simple ingredients are already
sufficient to produce an intermediate phase and the
two phase transitions, reproducing the experimental
phase diagram [3]. This suggests that, beyond the
case of rigidity and its application to covalent glasses,
this type of intermediate phase could be found in
other contexts, like K-satisfiability and other com-
binatorial optimization problems in computer sci-
ence [7, 8].
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