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Hans Dehmelt’s question:

How can precise measurements be made with poorly
characterized devices such as semiconductor inver-
sion layers or Josephson junctions?

Josephson junctions are used as secondary voltage
standards, are consistent with one another to parts
in 10'7, and have led to a revision of accepted values
of fundamental constants.

The quantum Hall effect provides a secondary re-
sistance standard that is far more reliable than its

predecessors, and different devices agree to parts in
10"

The answer is related to topological quantum
numbers, which may relate a physically observable
quantity to a counting process in a way that is robust
to changes of the details of a system.

[t is not as simple as that, because the topological
quantum number is not usually the quantity that is
of direct physical interest.



Symmetry based quantum numbers
and topological quantum numbers

Familiar quantum numbers like angular momentum
and isospin are based on symmetries of dynamical
system — rotational invariance or charge indepen-
dence.

Nother’s theorem, symmetry groups and
Lie algebras.

[f, for example, the system is unchanged by ar-
bitrary rotations about a center of symmetry, then
there is a conserved quantity, angular momentum in
this case

Breaking of the symmetry leads to mixing and
eventual disappearance of such quantum numbers.



Topological quantum numbers, such as circulation
in superfluid *He, magnetic flux in superconductors,
Hall conductance in semiconductor inversion layers
(two-dimensional electron systems), are insensitive
to the symmetry of the system and to changes in
the details of the structure.

In some cases they can be determined with very
high precision, but not always.

Homotopy groups and winding numbers.

A central concern of homotopy theory is the clas-
sification of loops in spaces. Remember Ampere’s
law, which says that the integral of magnetic field
round a loop is equal to the current threading the
loop.

[ will mostly talk about how the phase angle of a
wave function changes round a loop. This is what
comes 1to quantization of circulation and flux in
superfluids and superconductors.

Something similar happens for the quantum Hall
effect, but it is more complicated.



Bose-Einstein condensates

Finstein (1924, 1925) showed that at sufficiently
low temperatures noninteracting bosons will collapse
into the lowest energy state.

Fritz London (1938) suggested that this could be
an explanation for the peculiar properties of super-
fluid helium below 2.17 K: specific heat singularity,
flow without viscosity, film flow, etc.

Bogoliubov (1947) showed that repulsion between
the atoms stabilizes the condensate, the multiply oc-
cupied wave function. We now believe this repulsive
interaction is essential for superfluidity, but liquid
helium is very far from Bogoliubov’s weakly inter-
acting gas.

Cornell;, Wieman and collaborators (1995) cooled
trapped alkali metal atoms well below 1 uK and
found that they formed a Bose-Einstein condensate.

Ketterle and collaborators (2000) rotated a Na
atom trap and showed that the rotation creates an
array of quantized vortices (Abrikosov lattice).
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Figure 1: Quantized vortices in rotating sodium atom clusters, as shown by Ketterle
et al., 2000

Onsager—Feynman argument for
quantized circulation

Bose-Einstein condensation involves a finite pro-
portion of bosons in system sharing a common single
particle state

U(r) = |¥(r)| expliS(r)] ,
a single-valued function of position.
Superfluid velocity is vy = hgradS/my, where my
is hellum atom mass.




The phase need not be single valued, but can
change by a multiple of 27 on a closed path that
goes round either an obstacle, such as a wire, or
when it goes round a mathematical line singularity
on which |W| vanishes. The circulation of the super-
fluid velocity round a path is given by

jﬁvs-drziy{gradSodr:ni.
iz my

The number n of quanta of circulation kg = h/my
is given by the winding number of the phase of
the condensate wave function.

1. The order parameter ¥ of the superfluid, the
condensate wave function, is the feature that al-
lows the topological properties of its phase to be

defined and studied.

2. The phase S satisfies the Laplace equation, since
—ihgradS represents a conserved current.

3. Controlling equation V*S = 0 leads to signifi-
cant boundary effects on measurements.

4. Superfluid velocity is not directly measured;
superfluid momentum density is measured.
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Figure 2: Vinen vibrating wire apparatus, as shown by Zieve et al., 1993

Vinen experiment (1961)

Cylinder with stretched wire running down middle
is filled with helium, which can be made to circulate
round the wire.

Magnus force: Fy = psky X (v — V) splits
vibrational modes of wire by Av = pgk/2mw, where
w is mass density of wire, £ circulation round it.

Rotating apparatus was cooled through superfluid
transition, then brought to a stop, leaving fluid ro-
tating around wire.
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Figure 3: Histogram of measured circulation p, in units of h/my4, from Vinen’s
experiment.

Initially the vortex is often on only part of the
wire, and the rest of it goes through the fluid. Re-
peated shaking of the wire usually gets rid of the
free end. This leaves all the vortex on the wire, and
a quantized circulation is measured.

Vinen found that measured circulations were clus-
tered around 0 and h/my, with about +3% preci-
S1011.

Packard group (1993) has confirmed kg = h/2ms
for B phase of superfluid *He, where condensed ob-
ject is a pair of *He atoms.
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Figure 4: Rayfield and Reif (1963) measurements of speed versus energy for ions
trapped on vortex rings, compared with theory.

Beautitul studies of vortex rings by Raylicld and
[Reif (1963) measure energy-velocity relation for ions
trapped on vortex rings.

For vortex ring of radius R, core radius a,
momentum P and energy F are

1 R
P = W(R - a’)zpsh.’o ) E ~ 5‘({%)05}%111 ;Lﬁ ?

so speed is inversely proportional to energy.
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Flux quantization in superconductors

Superconductor is superfluid in which condensate
consists of electron pairs.

[n Hamiltonian mechanics for particles of charge
g the relation between momentum p and velocity v

1S
1

V= __(I)"* QfX) )
m
where A is the vector potential whose curl gives the
magnetic field B.
So, in quantum theory the current density 1s

2
j= —-(@grads - 2—6*-A)|\I!|2 .
m m
¥ represents condensate wave function for electron
pairs, so factor —2e is put in front of vector potential
A to allow for charge —2e, mass 2m.
Curl of this equation gives London equation

2 2
e . € .
VB =B, = V=",
m m
so magnetic field and current density fall off expo-
nentially inside superconductor or away from vortex

COre.
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In interior region where current density vanishes,

A -dr = ——E-fgrader:n;—h—.
2e 2e

Since integral of the vector potential round a ring

gives the flux enclosed by the ring, this shows that

the flux trapped by a superconductor is equal to n

times h/2e, where again n is the winding number of

the phase of the condensate wave function.

Path enclosing quantized flux has to be in a re-
gion free of current density. It may either surround
regions in which there is no superconducting mate-
rial, where the flux is concentrated, or, for a type
IT superconductor in a weak magnetic field, it may
surround flux lines where the superconducting order
parameter has singularities.

Because London equation gives exponential de-
cay of current density, corrections to flux quantiza-
tion may be made exponentially small by increasing
length scale of system.
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Josephson effects

Josephson (1962)showed that phase of supercon-
ducting order parameter is directly detectable when
two superconductors, otherwise isolated from one
another, are connected at one or more points by a
thin insulating layer.

If the phase difference S;— Sy is constant between
the two layers there is a steady current

J = Jysin(S; — Ss)

between the two layers This is the de Josephson ef-
fect. Tt is used in the SQUID magnetometer, which
gives a very accurate way of detecting changes in
magnetic fields.

[f a potential difference V' is applied between the
two superconductors, the phases of the two change
at a rate which differs by 2eV//h. This produces an
alternating current Jysin(2eV't/h). This is the ac
Josephson effect. The Josephson frequency-voltage
relation V' = hv/2e provides by far the most precise
and reproducible way of measuring voltages.
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Figure 5: Apparatus for measuring balance between two voltages generated by the
same microwave frequency at two different types of Josephson junction, by Tsai,
Jain and Lukens (1983)

John Clarke (1968) developed high precision method
of balancing the voltages generated by the same con-
stant frequency source (microwave in later experi-
ments) on two different junctions made of different
materials.

A small difference in the dc voltage would generate
a slowly rising current in the inductive loop.

Tsai et al. experiment shows difference less than
2 parts 1n 1016,
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Quantum Hall effect

Experiments done by Klitzing (1980) on two-
dimensional electron systems at low temperatures in
high magnetic field (MOSFETSs) showed very pre-
cise Hall voltages (voltage transverse to the current)
where longitudinal voltage was negligible (no Ohmic
dissipation).

At these plateaus,

Vi h

with very high precision — initially better than one
part in 10°, soon shown to be more precise than any
other resistance measurement.

In the fractional quantum Hall effect, found by
Tsul. Stormer and Gossard (1982), integer m is re-
placed by simple exact fraction.

Yes its origin is topological, as shown by Laughlin,
but the story of how a winding number appears 1s a
little more complicated.
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FIG. 2. Hall resistance Ry, and device resistance,
R,,. between the potential probes as a function of the
gate voltage V, in a region of gate voltage correspond-
ing to a fully occupied, lowest (=0} Landau level, The
plateau in Ry has 2 value of 6453.320.1 2, The geom-
etry of the device was L =400 ym, W =50 pm, and L,
=130 pm; B=13 T.

at gate voltage close to the left side of the plateau.
In Fig. 2, this minimum is relatively shallow and
has a value of 6452.87Q at v, =23.30 V.

In order to demonstrate the insensitivity of the
Hall resistance on the geometry of the device,
measurements on two samples with a length-to-
width ratio of L/W=0.65 and L/W=25, respective-
ly, are plotted in Fig. 3. The gate-voltage scale
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F1G. 3. Hall resistance Ry for two samples with dif-
ferent geometry in a gate-voltage region ¥V, where the
n =0 Landau level is fully occupied. The recommended

value h/4e? is given as 6453.204 2 ,

Figure 6: Original measurement of quantum Hall effect by Klitzing Dorda and

Pepper (1980)
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Conclusions.

1. Topological quantum numbers seem to allow high
precision to be obtained from not very well de-
termined macroscopic systems.

)

. High precision of topological quantum numbers
requires that thermal and quantum fluctuations
do not carry order parameter between different
topological states at an appreciable rate.

3.1 do not know if neutral superfluids have circu-
lation quantized with high precision. Is this a
difference between the Helmholtz equation mn su-
perconductors and the Laplace equation for neu-
tral superfluids?

4. Dirac (1931) gave a topological argument for the
high precision of the quantization of electric charge.

Thanks to Ping Ao, Jean-Yves Fortin, Michael
Geller, Qian Niu, Sung Wu Rhee, Joe Vinen, Carlos

Wexler and Xiao-Mei Zhu, for collaboration, discus-
sion and advice.
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