Forward message passing detector for probe storage.

Oleg Zaboronski Mathematics Institute, University of Warwick, Coventry, UK

Joint work with:

- Tom Parnell (Department of Mathematics, University of Warwick, Coventry, UK)
- Haris Pozidis (IBM Zurich Research Laboratory, Ruschlikon, Switzerland)

Plan.

- Thermomechanical probe storage.
- Detection/decoding schemes for probe storage devices.
- Channel model for probe storage.
- Soft output detection: forward message passing (FMP).
- FMP detector for probe storage.
- Performance analysis: mutual information and BER
- Performance analysis: SER
- Conclusions

Probe storage.

Santa Fe, March 2008 - p.3/2

Storage density trends.

- Magnetic storage density is expected to reach $1 Tb/in^2$
- Further growth is limited by the superparamagnetic effect.

Probe storage has already demonstrated $1 Tb/in^2$ with $4 Tb/in^2$ demonstrators being developed.

IBM's Thermomechanical Probe Storage Concept

- Thin polymer medium is positioned under the array of 64×64 atomic force probes.
- Each probe operates in its own field of size $100\mu m \times 100\mu m$. Tip radius $\sim 10 nm$.
- Encoded data are stored as pits on the surface of the medium.

Read/Write

- Writing: the probe's tip is heated and pressed into the softened polymer film
- Reading: The probe heated to a smaller T follows the landscape of the polymer surface
- A probe inserted into a pit is cooler than the probe whose tip touches the surface. These variations are captured using a thermo-resistive sensor

Channel Model

Santa Fe, March 2008 - p.7/2

Non-linear Inter-symbol Interference (ISI)

- $I_k(x_{k-1}, x_k, x_{k+1})$
- Ideal readout at the k-th sampling point
 - A signal due to an isolated pit at k
 - $+(\alpha-1)x_kx_{k+1}$
 - $+\beta x_k x_{k-1}$

 $= x_k$

- Reduction in the signal strength due to plastic displaced from the (k+1)-st pit
- Signal enhancement due to plastic displaced into the (k-1)-st pit
- For experiments at $1 Tb/in^2$, $\alpha \approx 0.8$, $\beta \approx 0.1$
- α , β depend on write parameters, tip shape and medium material properties

Position Jitter

- Jitter = positioning error
- J << pit width</p>

•
$$\Delta I_k \sim J_k^2$$

Over 40% of total noise power is due to datadependent position jitter

$$r_k \approx I_k \cdot \left(1 - \left(\frac{\sigma_j}{h}W_k\right)^2\right) + \sigma_e N_k,$$

 W_k , N_k are independent normal r. v.'s, h is the pit's radius of curvature; σ_j , σ_e are the strengths of jitter and electronics noise correspondingly

Statistics of Signal Distortion

• Let
$$\eta_k = \frac{r_k - I_k}{I_k}$$

• Let $\epsilon = \frac{\sigma_j}{h}$, $\delta = \frac{\sigma_e}{I_k}$.
• $\rho(\eta) \sim \frac{Const_-}{|\eta|^{1/2}} e^{2\frac{\eta}{\epsilon^2}}$, $\eta << -\epsilon^2$
• $\rho(\eta) \sim \frac{Const_+}{\eta^{1/2}} e^{-\frac{\eta^2}{2\delta^2}}$, $\eta >> \delta$

Signal distortion is non-Gaussian

Santa Fe, March 2008 - p.10/2

Detection/decoding

Santa Fe, March 2008 - p.11/2

The currently employed scheme

- HDD read channel: a sector of data is detected as the most likely binary string given the digitised received string using Viterbi algorithm.
- A significant increase of recording density beyond 1 Tb/in² would require a significantly more advanced detection decoding scheme

Desired scheme

- Read channel: soft output data detector
- ECC: Soft input decoder for LDPC, LDPC \circ RS, SPC \circ RS, etc. code

- MAP detector per probe is too complex
- Any easy ways to generate soft outputs?

Soft detection via forward message passing

Santa Fe, March 2008 - p.14/2

Soft threshold detector.

$$LLR_k \stackrel{def}{=} \ln \frac{Pr(x_k=1|r_k)}{Pr(x_k=0|r_k)} \stackrel{Bayes}{=} \ln \frac{Pr(r_k|x_k=1)}{Pr(r_k|x_k=0)}$$

- **•** Threshold bit estimate: $\hat{x}_k = signLLR_k$
- Information contained in $r_{k'}$: $k' \neq k$ is not used in the computation of LLR_k .

Forward message passing detector.

• Assume that r_k depends on $x_k, x_{k\pm 1}$ only.

• Let
$$LLR_k = ln\left(\frac{Pr(x_k=1|\vec{r}_{k+1})}{\Pr(x_k=0|\vec{r}_{k+1})}\right)$$
, where $\vec{r}_k = \dots r_{k-3}r_{k-2}r_{k-1}r_k$. Then

$$Pr(\vec{r}_k \mid x_{k+1}, x_k, x_{k-1}) = \frac{1}{2} Pr(r_k \mid x_{k+1}, x_k, x_{k-1}) \sum_{x_{k-2}=0}^{1} Pr(\vec{r}_{k-1} \mid x_k, x_{k-1}, x_{k-2})$$

• Message is an 8-dimensional vector of probabilities $Pr(\vec{r}_k \mid x_{k+1}, x_k, x_{k-1})$ propagated left-to-right using transfer matrix built out of conditional probabilities $Pr(r_k \mid x_{k+1}, x_k, x_{k-1})$.

where α 's and β 's are conditional probabilities.

- T_k is time-dependent. But, there are 4 time independent right null vectors and 2 time independent left null vectors.
- \checkmark Forward recursion can be reduced to a 3×3 recursion

Reduced recursion.

Santa Fe, March 2008 - p.18/2

Performance analysis

Santa Fe, March 2008 - p.19/2

Mutual information

- Mutual info between data and output LLR's: $I(X,L) = \mathbf{E}_X \left(\int_{-\infty}^{\infty} dl \rho(l \mid x) log_2 \left(\frac{\rho(l \mid x)}{\rho(l)} \right) \right)$
- FMP detector resolves the asymmetry of LLR's. Channel capacity is increased by about 5% compared to THD channel

Bit error rate

The performance of FMP (green curve) matches the performance of Viterbi detector (black curve)

Sector error rate: large deviations

Outer code: $RS(w, \tau, nN)$. Inner code: block size is nw + t bits. Symbol error counts for different IC blocks are independent identically distributed random variables. Let $\vec{p} = \{p_0, p_1, \dots, p_n\}$ be the probability distribution of symbol error count ξ in an IC block such that $E(\xi) < \tau$. Then

$$\frac{\ln(P_{se})}{N} \nearrow -D_{KL}\left(\vec{q} | | \vec{p}\right), \text{ as } N \to \infty.$$

where \vec{q} is the effective probability distribution given by

$$q_k = \frac{p_k \mu^k}{\sum_{m=0}^n p_m \mu^m}, \ k = 0, 1, \dots, n$$

and μ is the unique positive solution of the critical point equa-

tion, $\sum_{k=0}^{n} (k - n\tau) p_k \mu^k = 0$; D_{KL} is relative entropy

Sector error rate comparison

Santa Fe, March 2008 - p.23/2

Conclusions-I

- Probe storage DSP is challenging to the extreme: on the one hand we have a very noisy channel, on the other - the allowed complexity of read channel per probe is severely restricted
 - Forward message passing detector allows a generation of soft outputs at the complexity cost of a 3-state Viterbi detector without traceback unit with the performance matching that of the full 4-state Viterbi detector matched to the non-linear thermomechanical channel
 - Large deviations analysis leads to an analytic expression for SER in probe storage, which is useful for sufficiently short inner codes
 - Soft input SPC + RS code outperforms hard input RS code of the same rate by about 1 dB at $SER = 10^{-15}$.

Conclusions-II

- A twist in the tale: asymptotically, *RS* code is better!
- Research supported by PROTEM FP6 European network grant
- The reported results will be published in the proceedings of ICC2008.

