Approximating quantum group link invariants on quantum computers

Jon Yard

Los Alamos National Laboratory (QI/CNLS/CCS-3)

joint work with Cris Moore (UNM/SFI)

Conference on Classical and Quantum Information Theory

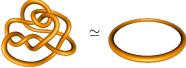
March 25, 2008

What is a link?

• A knot is a closed nonintersecting curve in \mathbb{R}^3

A link is a knot with many components

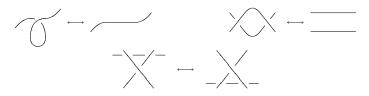
 Links are equivalent (isotopic) if they can be deformed into one another



Fundamental problem

- Do two descriptions describe equivalent links?
- How to describe a link?
- Link diagrams:

Theorem: Two link diagrams represent equivalent links iff they are connected by a sequence of Reidemeister moves:



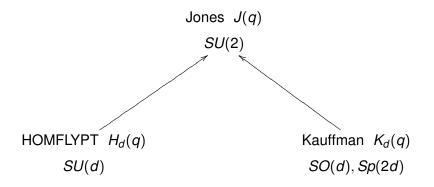
Problem: may have to introduce many more crossings
 no polynomial upper bound known

Polynomial invariants

• Link invariant = function on links $L \mapsto f(L)$ such that

L equivalent to $M \Rightarrow f(L) = f(M)$

- Should be computable (in principle) from some description
- This talk: polynomial invariants of links coming from "quantum" deformations of Lie groups (quantum groups)

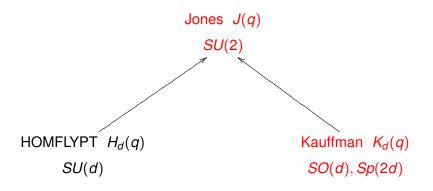


Polynomial invariants

• Link invariant = function on links $L \mapsto f(L)$ such that

L equivalent to $M \Rightarrow f(L) = f(M)$

- Should be computable (in principle) from some description
- This talk: polynomial invariants of links coming from "quantum" deformations of Lie groups (quantum groups)

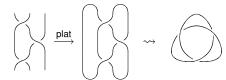


Describing links with braids

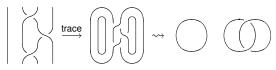
- Braid group *B_n*
 - generated by counterclockwise twists {σ₁, σ₂, ..., σ_{n-1}}

$$\sigma_1 = \swarrow \qquad \qquad \sigma_2^{-1} = \left| \qquad \qquad \sigma_2^{-1} \sigma_1 = \right|$$

- Trajectories in 2+1 dimensional spacetime
- Get links by closing braids
 - plat closure:

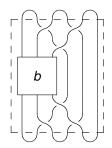


• trace closure:



Trace from plat

• Trace closure expressed as plat closure of related braid: [Jones '87]



Suffices to find algorithms for approximating plat closure

Generalites

- Given $b \in B_n$ (*n* even), let f(q) be invariant of plat closure
- General formula (for invariants of interest here):

$$\left|f(e^{2\pi i/\ell})\right|^2 = d_\ell^n \left|\langle \bigcup \bigcup \bigcup |U(b,\ell)| \cap \cap \rangle\right|^2$$

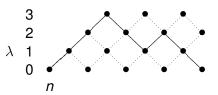
- $U(b, \ell)$ unitary representation of B_n ($\ell \in \mathbb{N}$)
- $| \bigcirc \bigcirc \bigcirc \bigcirc \rangle$ has *n*/2 caps
- Upper bound (by unitarity): $|f(q)|^2 \leq d_{\ell}^n$ (exp. large)
- Efficiently sample r.v. X with $\mathbb{E}X = d_{\ell}^{-n} |f(e^{2\pi i/\ell})|^2$ if
 - Can prepare and measure $| \bigcirc \bigcirc \bigcirc \rangle$
 - Can efficiently implement $\dot{U}(\sigma_i, \ell)$ for each generator
- w.h.p., obtain approximation of d⁻ⁿ_ℓ |g(e^{2πi/ℓ})|² ± δ on QC in poly(length of braid, 1/δ) time

Jones representations of B_n

•
$$\mathcal{B} = \operatorname{span}\left\{ \left| 0 = \lambda^{(0)} \to \lambda^{(1)} \to \dots \to \lambda^{(n)} = 0 \right\rangle \right\}$$

•
$$|\lambda^{(i)} = \lambda^{(i-1)}| = 1, 0 \le \lambda^{(i)} \le k, (q = e^{2\pi i/(k+2)})$$

• Example $k = 3, q = e^{2\pi i/5}, n = 8$: 0 1 2 3



• Braid generator σ_i acts locally on $(\lambda^{(i-1)}, \lambda^{(i)}, \lambda^{(i+1)})$, e.g.

$$\mathbf{b}(\sigma_i, q) \middle| \bullet \left| \bullet \right\rangle = \alpha \middle| \bullet \left| \bullet \right\rangle + \beta \middle| \bullet \left| \bullet \right\rangle$$

- α, β functions of $(\lambda^{(i-1)}, \lambda^{(i)}, \lambda^{(i+1)})$ only
- Just a phase for straight segments

Approximating Jones polynomial on quantum computer [AJL, FKW]

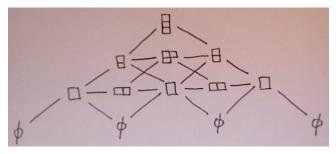
- Quantum circuits for Jones representation of B_n
 - Embed representation into $(\mathbb{C}^2)^{\otimes n}$
 - Encode paths into qubits $|up\rangle|down\rangle|up\rangle|up\rangle$
 - Coherently compute $\lambda^{(i)}$'s
 - Braiding by local controlled unitaries (efficient)
 - Coherently uncompute λ⁽ⁱ⁾'s
 - Therefore can apply unitary $U(b, \ell)$ efficiently for $b \in B_n$
- Can efficiently prepare (and measure) state

 $| \bigcirc \bigcirc \bigcirc \bigcirc \rangle = |up\rangle |down\rangle |up\rangle |down\rangle |up\rangle |down\rangle$

- Can thus estimate $d_{\ell}^{-n}|J(e^{2\pi i/\ell})|^2$
- Also possible to estimate phase with swap test

Kauffman polynomial representation (BMW-algebra)

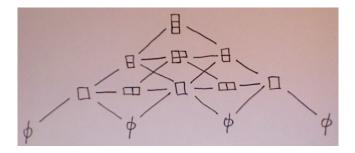
- Basic structure of representations remains the same for *K_d*(*e*^{2πi/ℓ}) [Wenzl, Leduc & Ram]
- Just paths on a more complicated path of Young diagrams with at most |d| rows and n – 2k boxes at n'th step
- Add or remove a box at each step
- Example: n=6



• Root of unity $e^{2\pi i/\ell}$ truncates some diagrams from graph

Implementing the representation on QC

- Each step in path has $\leq 2|d|$ choices
- Encode paths into $(\mathbb{C}^{2|d|})^{\otimes n}$
- Braid generators act locally as in Jones representation implementation
- Braid group generators efficiently applied to O(log 2|d|) local qubits



Further generalizations

- Common features to Jones and Kauffman:
 - Braid group representations expressed on path bases for centralizer algebras of tensor powers V^{⊗n} of defining representation V of some quantum group
 - Jones $U_q(\mathfrak{sl}_2)$ Temperley-Lieb algebra
 - Kauffman $U_q(\mathfrak{so}_d)$, $U_q(\mathfrak{sp}_{-2d})$ BMW-algebra
 - Underlying representation is self-dual (V = V*) cupcaps correspond to contraction operator (projection onto trivial irrep in V⊗V* = V⊗V)
 - Bratelli diagram for iterated tensor products is
 multiplicity-free
- Many other invariants possible:
 - Arbitrary quantum group $U_q(\mathfrak{g})$, \mathfrak{g} = simple Lie algebra
 - Arbitrary self-dual representation generating multiplicity-free diagram (these are classified by Howe)

Future

- Other invariants?
 - Reshetikin-Tureav graph/3-manifold invariants...
- HOMFLYPT invariant of *oriented links* but requires more work since V ≠ V*
 - Trace closure done by [WY]
- Complexity?
 - BQP
 - DQC1 (one pure qubit)
- Real applications? New useful algorithms?