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Quantum Circuit Model

abstracts from the details of concrete physical systems
and states that the required elementary operations are

initialization in basis states

implementation of one and two-qubit gates

measurement of single qubits in basis states

many other models such as measurement-based qc,
adiabatic qc, topological qc

however, the common principle underlying all these
models is that the computation process is driven by
applying a sequence of control operations
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Hamiltonian Quantum Computer

prepare an initial state in the computational basis that
encodes both the data and program

let the Hamiltonian time evolution act undisturbed for a
sufficiently long time

measure a small subsystem in the computational basis
to obtain the result of the computation with high
probability
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Hamiltonian Quantum Cellular Automaton

more specifically, we call it a Hamiltonian quantum
cellular automaton provided that

the Hamiltonians acts on qudits that are arranged on
some lattice

is invariant with respect to transitions along the
symmetry axis of the lattice

contains only finite range interactions

most natural Hamiltonians have these properties, so it
is important to construct HQCA that are as close as
possible to natural interactions
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Continuous-time versus Discrete-Time QCA

the evolution of discrete-time QCA proceeds in discrete
update steps (tensor products of local unitary
operations)

the execution of updates on overlapping cells is
synchronized by external control

in contrast, the states of the HQCA change in a
continuous way according to the Schrödinger equation
(time-independent Hamiltonian)

all the couplings (interactions) are present all the time
⇒ they have to include a mechanism that ensures the
logical operations are executed in the correct order
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Motivation

fundamental question in thermodynamics of
computation how to realize computational processes
within a closed physical system

HQCA could trigger new ideas for reducing the set of
necessary control operations in current proposals by
using the inherent computational power of the
interactions

this model can show the limitations of current and future
methods in condensed for simulating the time evolution
of translationally invariant systems
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Related works

Benioff/Feynman/Margolus

Janzing/W.
initial state is a canonical basis state; finite range
interactions in 2D

univ. nn H. in 2D acting on qutrits; is trans. inv. only if
translated over several lattice sites

Vollbrecht/Cirac
univ. trans. inv. nn H in 1D acting on 30-dimensional
qudits

Chase/Landahl
univ. nn H in 1D acting on 8-dimensional qudits; but not
trans. inv.

Hamiltonian Cellular Automata in 1D – p. 8/24



Our Hamiltonian

acts on 10-dimensional qudits arranged on a 1D chain

contains only nearest-neighbor couplings (pair
interactions)

is translationally invariant (translation by one cell)
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Universal Quantum Gates

we can realize universal QC with the controlled gate
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provided that we can apply it to arbitrary pairs of qubits

however, we want to operate only on adjacent qubits ⇒
we have to include the swap gate S
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Universal “Staircase” Quantum Circuits

|w1〉
W I S

|w2〉
S W W

|w3〉
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Hilbert space of the HQCA

a cell Hc consists of a program subcell and a data
subcell

Hc = Hp ⊗Hd = C
5 ⊗ C

2

the canonical basis states of Hp are
| ◮〉 pointer symbol
| � 〉 empty spot symbol
|W 〉, |S〉, |I〉 gates symbols

the canonical basis states of the Hd are |0〉 and |1〉

the Hilbert space of the HQCA is

Hc ⊗Hc ⊗ · · · ⊗ Hc
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Initialization of the HQC

|w1〉
W I S

|w2〉
S W W

|w3〉

the initial state |ϕ〉 is a canonical basis state

� � ◮ � � ◮ � � ◮ I W S I I W I S W I

0 0 0 0 0 0 0 0 0 w1 w2 w3 0 0 0 0 0 0 0
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Transition Rules of the HQCA

� � ◮ � � ◮ � � ◮ I W S I I W I S W I

0 0 0 0 0 0 0 0 0 w1 w2 w3 0 0 0 0 0 0 0
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Transition Rules of the HQCA

� � ◮ � � ◮ � � I ◮ W S I I W I S W I

0 0 0 0 0 0 0 0 0 w1 w2 w3 0 0 0 0 0 0 0

I has been applied to 0 and w1
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Transition Rules of the HQCA

� � ◮ � � ◮ � I � ◮ W S I I W I S W I

0 0 0 0 0 0 0 0 0 w1 w2 w3 0 0 0 0 0 0 0

I has moved one spot to the left

Hamiltonian Cellular Automata in 1D – p. 16/24



Transition Rules of the HQCA

� � ◮ � � ◮ � I � W ◮ S I I W I S W I

0 0 0 0 0 0 0 0 0 w1 w2 w3 0 0 0 0 0 0 0

W has been applied to w1 and w2
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Transition Rules of the HCA

� � ◮ � � ◮ � I � W S ◮ I I W I S W I

0 0 0 0 0 0 0 0 0 w1 w2 w3 0 0 0 0 0 0 0

S has been applied to w2 and w3
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Transition Rules of the HCA

a gate particle A ∈ {W,S, I} can move one spot to the
left if that spot is empty

� A → A �

if a gate particle meets the pointer ◮, then A and ◮

swap positions and the gate A is applied to the two
qubits below

◮ A

x y
→

◮ A

A(x, y)
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Hamiltonian of the HCA

the Hamiltonian is

H =
∑

j

(F + F †)(j,j+1)

the forward-time operator

F =
∑

A∈{W,S,I

[

|A �〉〈� A|p,p′ ⊗ Id,d′ + |A ◮〉〈◮ A|p,p′ ⊗Ad,d′

]

realizes the transition rules

Hamiltonian Cellular Automata in 1D – p. 20/24



Analysis of the Run-Time

the time evolved state |ϕ(t)〉 = exp(−iHt)|ϕ〉 can be
written as

∑

C

αC(t)|C〉 ⊗ |ψC〉 ⊗ |00 · · · 0〉

C is a configuration of the program band

|ψC〉 is the state of the data register corresponding to
C

|00 · · · 0〉 is the (invariant) state of the data band
outside the data register
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Analysis of the Run-Time

choose t so that all gate particles of the program code
have moved to the left of the data register
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Dynamics of hard-core bosons in 1D

W S I 7→ 1 � ◮ 7→ 0

the initial state is mapped onto

· · · 000000000000000000|11111111111111111111111111111 · · ·

how long does it take the L blue particles to move to the
left of | with high probability under the dynamics

H =
∑

j

(

|01〉〈10| + |10〉〈01|
)

j,j+1

if we let the system evolve for t chosen uniformly at
random from [0,Θ(L logL)], the probability is at least
5/6 −O(1/ logL)
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Conclusion/Future Research

Hamiltonian Quantum Cellular Automaton

does not require any control operations during
computational process

requires only the preparation of product states in the
canonical basis and measurement of a small
subsystem in the canonical basis

reduce the dimension of the cells even further

incorporate fault-tolerance in HQCA
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