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Overview

• Area laws
• Parameterizing ground states
• Complexity of finding ground states
• Dissipative quantum engineering and quantum computation



Hilbert space is a convenient illusion
• Let’s investigate the features of the manifold of states that can be created 

under the evolution H(t) for times T polynomial in number of qubits N: T= Nd

• Conclusion: all physical states live on a tiny submanifold in Hilbert space; 
there is no way random states (i.e. following the Haar measure) can be 
created in nature, even with a QC

• What about ground states?

• Solovay-Kitaev: given a standard universal gate set on N spins (cN gates), 
then any 2-body unitary can be approximated with log(1/ε) standard gates 
such that ║U-Uε║< ε

• Given any quantum circuit acting on pairs and of polynomial depth Nd, this 
can be reproduced up to error ε by using Nd log(Nd /ε) standard gates. The 
total number of states that can hence be created using that many gates 
scales as

• Consider however the DN dimensional hypersphere; the number of points 
that are ε-far from each other scales doubly exponential in N: 
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Area laws, correlations, entanglement

• Ground states and thermal states of local Hamiltonians have very
special properties (both for classical and quantum), because the
energy only depends on the local correlations
– Thermal states: state with maximal local correlations compatible

with symmetries (typically translational symmetry) and global 
entropy

– GS: quantum fluctuations can decrease energy: entanglement

• Direct consequence: amount of correlations is small

– Classical spin system: when looking at configuration of spins in a 
subregion, how much information does that give me about spins 
in complementary region?

• Bounded by boundary between them,
not by volume

– Quantum case: same A

B



Area laws
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Quantifying the amount of correlations between A and B: mutual information

All thermal states exhibit an exact area law (as contrasted to volume law)

Cirac, Hastings, FV, Wolf

• All correlations are localized around the boundary, which is a big constraint
• What happens at zero temperature?

– Classical: nothing
– Quantum: gapped systems still seem to obey area law, critical systems 

might get a logarithmic correction (still exponentially smaller than what 
we get for random states)



Area laws

• Main picture: in case of ground states, entanglement is concentrated around the 
boundary
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Topological entropy: detects topological quantum 
order locally!
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Stronger area laws using Renyi entropies
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• Interpolates between von Neumann (a=1) to Schmidt number (a=0)
• Generic expected behaviour for local 1-D quantum spin systems: 

• Proven rigorously in a model-independent way: 

Hastings ‘07
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Parametrizing ground states of quantum spin chains
• Search for class of wavefunctions that capture the properties of 

ground/thermal states

• In one dimension: AKLT/ Matrix Product States / Finitely Correlated States

• In 2-D: AKLT / PEPS:
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Efficiency of Parametrization
• So how good will MPS approximate  ground states? We want find a bound on the scaling of D 

as a function of the precision desired and the number of spins N

– We impose                                        with ε independent of N,D

– Because the scaling of the α-entropy of blocks of L spins in spin chains is bounded by

it follows that it is enough to choose 

– It shows D only has to grow as a polynomial in the number of particles to obtain a given 
precision, even in the critical case! 

• Hastings 2007: All ground states of gapped Hamiltonians obey area law
– Similar proof in principle applies to the higher dimensional generalizations of MPS: PEPS

• MPS / PEPS are  hence the ideal variational class of wavefunctions for simulating strongly 
correlated quantum spin systems; in other words: we have identified the right submanifold!
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Complexity of finding MPS minimizing energy of a 
given local 1-D Hamiltonian

• In general: Aharonov/Kempe/Gottesman: no hope for finding GS of general 1-D 
Hamiltonians: problem is QMA-hard!

• In practice, very efficient method exists to find ground states of 1-D quantum spin 
systems: DMRG (variational method within the class of MPS)
– Note: numerical RG of Wilson is also variational within class of MPS
– How does it work?

• Alternating least squares (ALS)
• Complexity of ALS: NP-hard (Nermirovski, Eisert)

• Natural question to ask from the computational complexity point of view:

– What power would it give me if I could find MPS that minimizes energy of a 
given 1-D Hamiltonian?

.



Worst case is NP-complete
• Building upon QMA-constructions of Kitaev

– Given a quantum circuit consisting of unitaries , we can 
construct the almost frustration free Hamiltonian

whose ground state is

• Kitaev, Kempe, Aharonov, Gottesman: this Hamiltonian can be made local 
and 1-D (hence deriving QMA-hardness result)

• Observation: if we choose all unitaries to be permutations, then           is a 
superposition of separable states and hence with all Renyi entropies 
bounded, but reversible computation has same power as Turing machine 
hence NP-hardness result
– gap of Hamiltonian can even be calculated exactly:
– To prove that problem is inside NP: trivial 
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Further results on Quantum Merlin Arthur (QMA)

• Oliveira and Terhal (’04): nearest neighbour Hamiltonian of spin ½ on a 
square lattice: finding ground state is QMA-complete 
– Trick: use gadgets / perturbation theory to create effective many-body 

interactions
– Catch (cfr. Talk of Bravyi): couplings have to scale with system size

• One can go further:
– Hubbard model with local varying magnetic field: QMA-complete

– Similar: Heisenberg model with local varying magnetic field
– Hubbard and Heisenberg model natural candidates for quantum spin

glasses

– Consequences for density functional theory: 
• if an efficient description exists for the universal functional, then QMA=NP  !



What about complexity of preparing PEPS?

• At least as hard to find PEPS as it is to find MPS
• Problem is even not in NP:

– Given a PEPS, calculate its energy is PP-hard problem
This follows from the fact that the complexity of contracting a 
tensor network (like arising in classical partition functions) is PP

– In practice: efficient ways of doing this (PEPS-algorithms 
exploiting area laws); cfr DMRG

• Important property of all MPS/PEPS: they are ground states of 
frustration free Hamiltonians

• Question: how to prepare “physical” PEPS using a quantum 
computer?

0P         ;       0P         ;      0t =≥=∑ χt
t

tPH



Dissipative quantum engineering

• Define a dissipative process (master equation) whose fixed point
corresponds to ground state of the frustration-free Hamiltonian

– A sufficient condition for the ground state to be a fixed point:

– We want that only ground states are fixed points. This we can do
by choosing

where the unitary rotates part of the “bad” subspace into the 
“good” one. It can be shown that this makes condition also 
necassary

• This is how to prepare MPS/PEPS
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• How efficient? Central quantity of interest: the gap of the Liouvillian

– Polynomially versus exponentially small in system size:  P vs. NP
– Gap of the Liouvillian quantifies complexity of simulating system 

on a quantum computer!
• Gap of Hamiltonian: does not tell anything about computational 

complexity: Ising spin glasses have gap 1, but gap in Liouvillian
should be exponentially small (has this been proven?)

• Can one prove that this scaling is independent on actual choice of 
Lindblad operators?

• Note: given a CP-map with corresponding gap, this can always be 
turned into Liouvillian with same gap  (cfr e.g. from Metropolis to 
Fokker-Planck)



Examples of dissipative state engineering
• Case of Hamiltonian that only contains commuting terms: 

convergence after time O(log(N)) or O(N.log(N)) depending on 
nature of excitations (local vs. topological)
– Special cases: cluster states, toric code state, …
– Relevance of this class of states: fixed points of real-space RG 

transformations on the level of quantum states 

• Case of MPS: seems to be efficient (for now, we can only prove that 
gap = exp(-(logN)^2) using previous Liouvillian, although we now 
how to do define other one with poly gap).

• General PEPS: no bounds known, as should be (if we could prepare
any PEPS with small bond dimension, we could solve any problem 
in PP=postBQP). Philosophy: physical PEPS will correspond to fast 
convergence

• Finite-Temperature Gibbs states in case of commuting operators: 
OK using Metropolis-like ideas



Dissipatively driven quantum phase transitions

• Can a quantum phase transition be driven by dissipation?
• One can easily construct families of frustration free Hamiltonians that exhibit 

quantum phase transitions: “Rokhsar-Kivelson” Hamiltonians
– Take any classical spin system exhibiting finite-T phase transition (e.g. Ising

model)

– Define the quantum state which is coherent version of partition function:

• Has exactly the same correlation functions as classical one
• Is ground state of local frustration-free Hamiltonian which depends on parameter 

beta : PEPS!
• Obviously exhibits a quantum phase transition if parameter beta is varied

• Hence: zero-temperatuere quantum phase transitions can be driven by 
dissipative processes
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Dissipative quantum computation

• What is the computational power of a purely dissipative quantum 
systems with local Lindblad operators and no coherent evolution?

– BQP-complete: as powerful as a quantum computer!
– Proof: use frustration-free Kitaev Hamiltonian where you add 

appropriate initialization conditions (cfr. Adiabatic QC), use 
Lindblad operators discussed before, and one can prove that 
gap of Liouvillian is poly(1/T)

• gap independent of actual quantum computation done!
• Defies some of DiVincenzo criteria for QC: no initialization, no 

unitaries
• Robustness issues, fault tolerance, comparison with adiabatic QC?

• What about non-equilibrium quantum phase transitions: quantum 
traffic ?
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Simulating general master equations with a QC

• Add qubit ancilla, and couple it via Hamiltonian                                 
to the original many-body system. Then simulate dephasing channel         
.                       on that ancilla with a strength               

• Second order perturbation theory yields desired master equation
• All gadget constructions can be generalized to this non-Hermitean

setting



Conclusion

• Thinking about general structure of low-energy wavefunctions is fun 
and useful

• Thinking about area laws is fun and useful
• Thinking about computational complexity vs. many-body systems is 

fun and useful
• Thinking about dissipation is fun and useful
• Thinking about Ackerman numbers is fun and useful
• Thinking about Hamiltonian complexity is fun and useful
• Being in Santa Fe is fun


