

Some aspects of information-driven networks

David Sherrington University of Oxford

With help from Ton Coolen, Tobias Galla, Heiko Bauke, Cris Moore

Some aspects of information-driven networks

dynamical David Sherrington

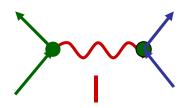
University of Oxford

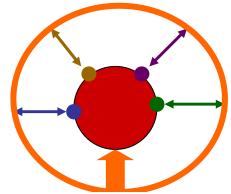
With help from Ton Coolen, Tobias Galla, Heiko Bauke, Cris Moore

Types of problem

1. 'Information' as a connector

- Many 'agents' with individual propensities
 - Abilities, inclinations, aversions, strategies
 - Not necessarily any direct interaction
- Respond to 'common information'
 - Available equally to all
 - Some generated by the collection of agents (endogenous)
 - Some generated by external sources (exogenous)
 - Leads to effective interaction
 - *c.f.* bosons in QFT or maybe

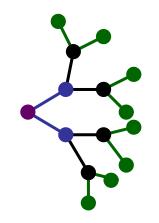




2. Networks retrieving information by queries

- Minimise 'time'/ # steps to find someone with the answer
 - Scale-free networks
 - Search *N* nodes in In*N* steps

- Dynamical networks
 - Growing
 - Much studied
 - Networks under churn
 - Nodes constantly entering and leaving
 - Topological transitions



1. Information as connector

- Many-body
- Quenched disorder
 - Different 'agents' ~ different abilities, strategies etc.
- Often frustration/competition
- Dynamical

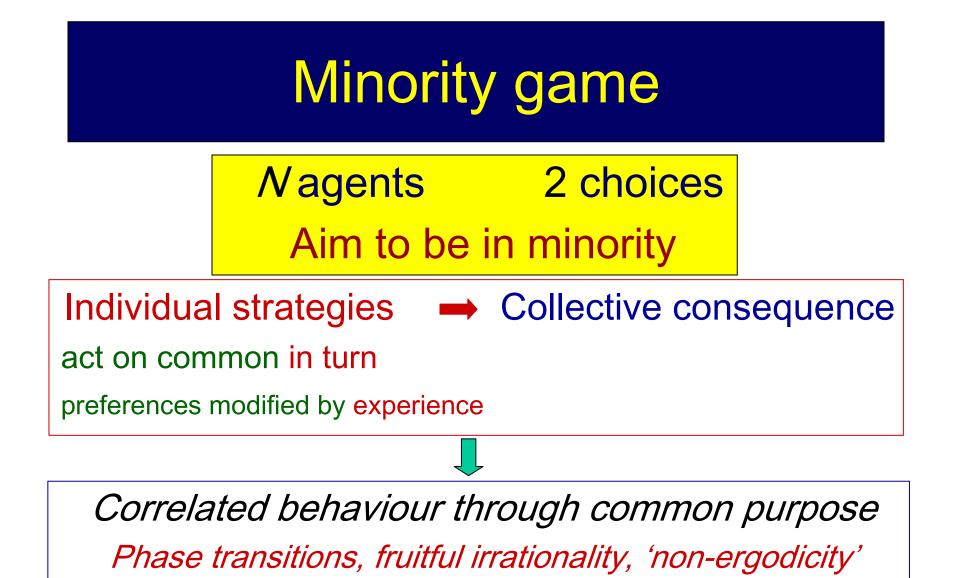
- Cooperative behaviour?
 - Transitions?
 - Complex?

- Models
- Methodology

- Range-free information
 - Some solutions
 - Some concepts

Stockmarket Many speculators; buy low, sell high Price & Information Consequence Time Buy & sell (Dynamics I) Learn from Common information **Different strategies** Experience ? (Mean field) (Disorder) (Dynamics II)

Not all can win (Frustration)



Original MG model

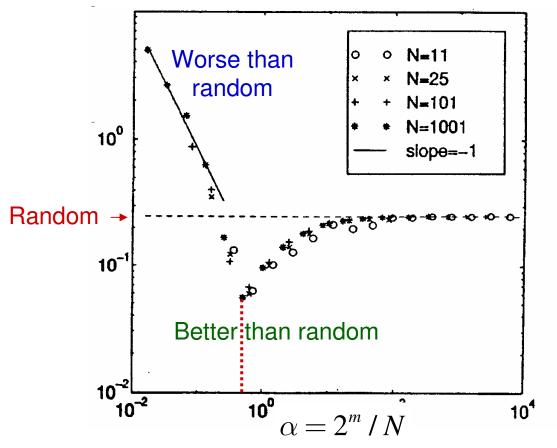
(Challet & Zhang '97)

- Information: Minority choice last *m* steps
- Strategies: Boolean functions
 - (few each, random quenched, different for each agent)
- Points: decide which strategy to use (*t*) updated by performance (*t*) best strategy used (*t*)

'Volatility'

a 'natural' relevant macroscopic observable

Standard deviation of #'buy' versus #'sell'



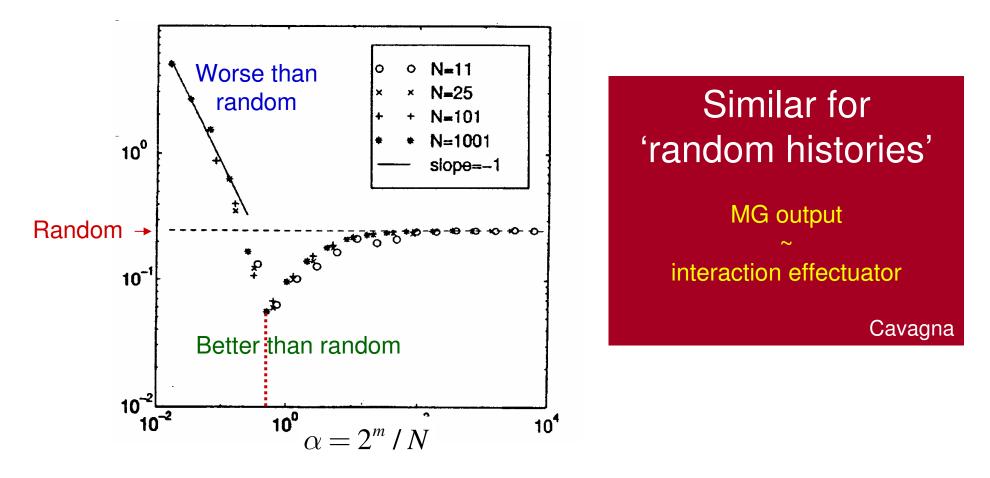
- •Scaling parameters: $\alpha = 2^m/N$, σ/\sqrt{N}
- •Phase transition:α_c minimum in volatility

Savit, Manuca, Riola 99

'Volatility'

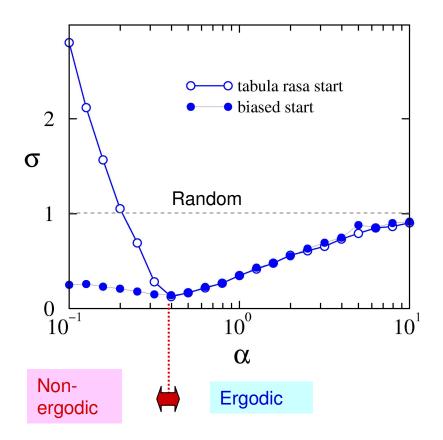
a 'natural' relevant macroscopic observable

Standard deviation of #'buy' versus #'sell'



Ergodicity-breaking

Generalized batch model



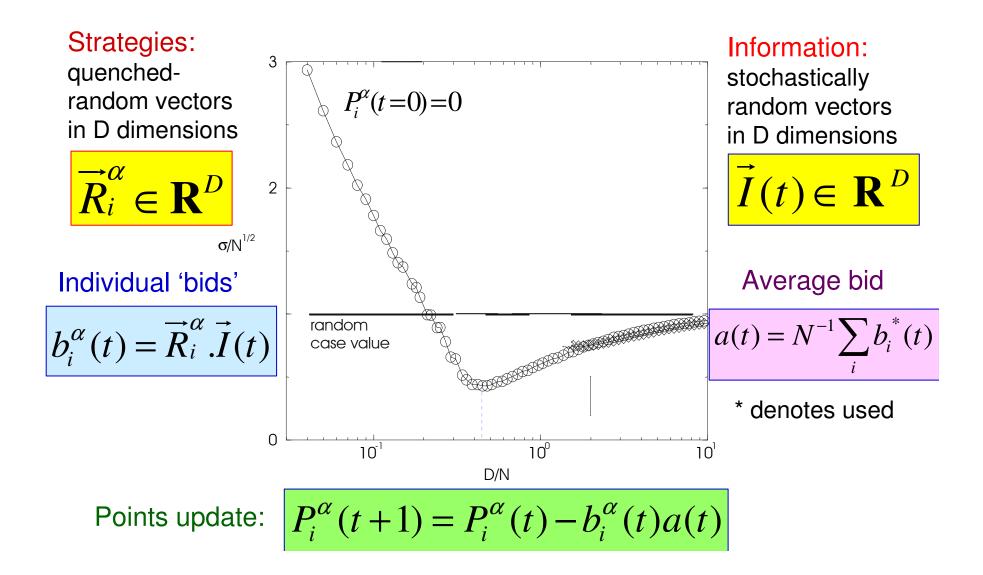
Phase transition $\alpha = \alpha_c$

Minimum in volatility & Ergodic/ non-ergodic

Recall: $\alpha = 2^m / N$

= D / N

MG with 'random information'



Difference equation

- Relative point-score: $p_i(t) = P_i^1(t) P_i^2(t)$
- Dynamics: $p_i(t+1) = p_i(t) N^{-1} \sum_j [\overrightarrow{R_j}, \overrightarrow{I(t)}] [\overrightarrow{I(t)}, \overrightarrow{\xi_i}].$
- Strategy vectors: $\vec{\sigma}_i, \vec{\xi}_i = \vec{R_i^1} \pm \vec{R_i^2}$

Coarse-grained time-average over I(t)

Effective interaction between agents

$$H = \sum_{ij} J_{ij} s_i s_j + \sum_i h_i s_i$$

$$J_{ij} = \sum_{\mu} \xi^{\mu}_{i} \xi^{\mu}_{j}, \quad h_{i} = \sum_{j,\mu} \overline{\sigma}^{\mu}_{j} \xi^{\mu}_{i}$$

'Equation of motion'

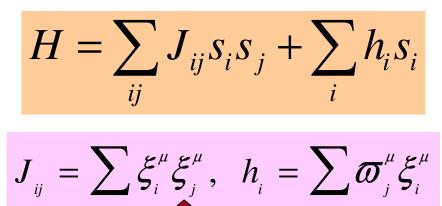
Batch

equivalent to updating points only after time O(N); averaging over 'common information'

$$p_i(t+1) = p_i(t) - h_i - \sum_j J_{ij} \operatorname{sgn} p_j(t)$$
$$= p_i(t) - \partial H / \partial s_i \Big|_{\{s_i = \operatorname{sgn} p_i(t)\}}$$

c.f. Anti-Hopfield in field

Effective Hamiltonian



c.f. Hopfield model

μ

$$J_{ij} = -\sum_{\mu} \xi_{i}^{\mu} \xi_{j}^{\mu}$$

$$\widehat{I}$$
Attractors

Recall

$$\overrightarrow{\sigma_i}, \ \overrightarrow{\xi_i} = \overrightarrow{R_i^1} \pm \overrightarrow{R_i^2}$$

j,μ

$$\therefore \{h_i = 0\} \equiv \{\overrightarrow{R_i^1} = -\overrightarrow{R_i^2}\}$$

Anti-correlated strategies

Full macrodynamics equilibrium or non-equilibrium

Starting point: generating functional

$$Z = \int \prod_{t} d\vec{p}(t) W(\vec{p}(t+1) | \vec{p}(t)) P_0(\vec{p}(0))$$

Updates:
$$p_i(t+1) = p_i(t) - h_i - \sum_j J_{ij} \operatorname{sgn} p_j(t) \longrightarrow W$$

Batch: $h_i = N^{-1} \sum_j \vec{\xi}_i \cdot \vec{\omega}_j$; $J_{ij} = N^{-1} \vec{\xi}_i \cdot \vec{\xi}_j$

(Coolen & Heimel)

Micro \rightarrow Macro

Introduce auxiliary 'macrofields' (x 1)

$$1 = \int DC(t,t') \Pi_{t,t'} \delta(C(t,t') - N^{-1} \sum_{i} p_i(t) p_i(t')) \text{ etc.}$$

- Exponentiate delta functions e.g. $\int d\hat{C}(t,t') \exp\{-i\hat{C}(t,t')[C(t,t') N^{-1}\sum_{i} p_i(t)p_i(t')]\}$
- Disorder average (over strategies)
- Substitute for many microvariables
- Gaussian in explicit microvariables: integrate out

$Micro \rightarrow Macro$

Now macrovariables only $\overline{Z} = \int [DCD\hat{C}] [DKD\hat{K}] [DLD\hat{L}] \exp\{N[\Psi + \Phi + \Omega]\}$ $C(t,t') = N^{-1} \sum_{i} s_{i}(t) s_{i}(t')$ $K(t,t') = N^{-1} \sum_{i} s_{i}(t) \hat{p}_{i}(t'); \quad \hat{p} \sim \partial/\partial s$ $L(t,t') = N^{-1} \sum_{i} \hat{p}_{i}(t) \hat{p}_{i}(t'), \quad etc.$

Large N: extremally dominated

Saddle-point \rightarrow effective single particle dynamics

Effective single-agent ensemble

Non-Markovian stochastic process

$$p(t+1) = p(t) - \alpha \sum_{t' \le t} (\mathbf{1} + \mathbf{G})^{-1}_{tt'} \operatorname{sgn} p(t') + \theta(t) + \sqrt{\alpha} \eta(t)$$

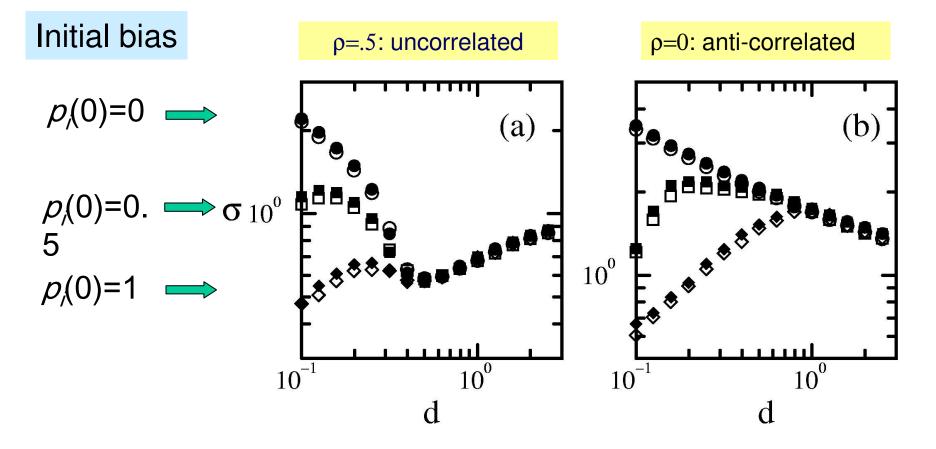
where $\langle \eta(t)\eta(t') \rangle = [(\mathbf{1} + \mathbf{G})^{-1}(1 + \mathbf{C})(\mathbf{1} + \mathbf{G}^{\mathsf{T}})^{-1}]_{tt'}$

with coloured noise, memory, self-consistent correlation & response functions

$$\begin{split} C_{tt'} &= \left\langle \operatorname{sgn} \, p(t) \operatorname{sgn} \, p(t') \right\rangle_* \equiv N^{-1} \sum_i \left\langle \operatorname{sgn} \, p_i(t) \operatorname{sgn} \, p_i(t') \right\rangle \\ G_{tt'} &= \frac{\partial}{\partial \theta(t')} \left\langle \operatorname{sgn} \, p(t) \right\rangle_* \equiv N^{-1} \sum_i \frac{\partial}{\partial \theta_i(t')} \left\langle \operatorname{sgn} \, p_i(t) \right\rangle \end{split}$$

where $\langle f \rangle_*$ is an effective average involving $P_0(p(0))$, **G**, **C**. Exact but non-trivial

Simulations & iterated theory



Open = simulations Solid = numerical iteration of analytic effective agent equations

Galla & S

Solutions

Effective single agent equations

Any α : Numerically soluble for finite number of time-steps, but increasingly computer-expensive as *t* increases

 $\alpha{\geq}\alpha_c: \mbox{ Analytically soluble for certain quantities} \\ \mbox{ with ansätze whose breakdown signals } \alpha_c$

 $\alpha < \alpha_c$: Not yet solved

Further ansätze for equilibrium analysis: $\alpha \ge \alpha_c$

- Stationarity: $C_{tt'} = C(t-t'), \ G_{tt'} = G(t-t')$
- Finite integrated response
- Weak long term memory: $\lim_{t\to\infty} G_{tt'} = 0$ for all finite *t*'

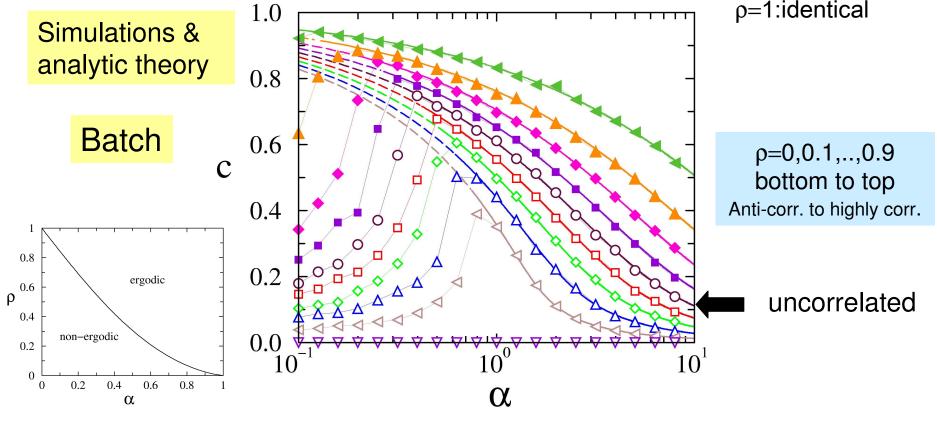
Order parameters in stationary state

- Persistent correlation function: $Q = \lim_{\tau \to \infty} C(\tau)$
- Integrated response: $\chi = \sum_{\tau} G(\tau)$
- Breakdown of theory: one of these assumptions violated

Persistent correlations

Correlated strategies: ρ : $P(R_{i1}^{\mu} = R_{i2}^{\mu}) = \rho$

$$\rho$$
=0: anti-correlated ρ =0.5: uncorrelated



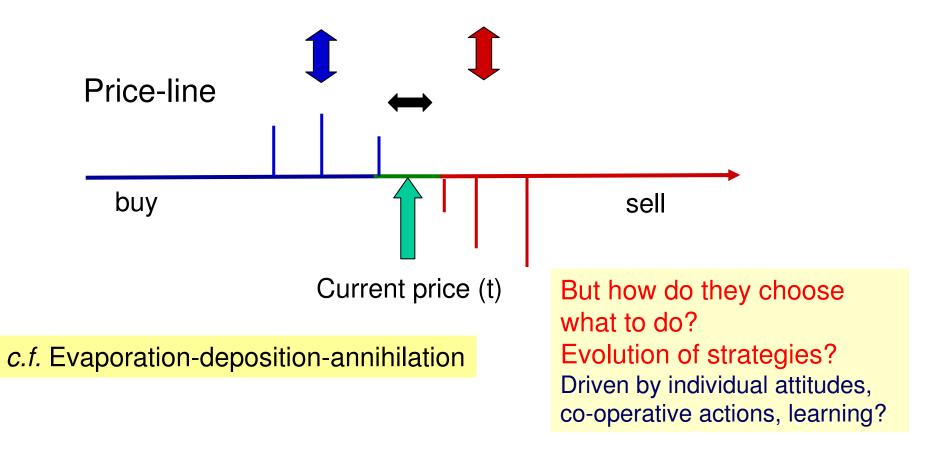
Possible extensions within econophysics

- Systems with more features but still range-free
 - i.e. more 'local' variables and couplings but still global interactions
- Dynamical strategies: still need heterogeneity
- Liquidity providers: c.f. ATP

More realistic extension of minority game?

Limit-order book

Agents place or remove orders: buy, sell, market. May be executed. Speculators gain on price changes. Manufacturers must absorb \rightarrow liquidity.



More generally

Dynamical generating functionals

 $Z = \int DS DJ \delta$ (Equations of motion) δ (constraints) *Jacobian*

Microscopic variables, all times Fast & slow microscopic "attempt" times in eqns. of motion Also generating term $\exp\{i(\lambda S + \mu J)\}$

Include real endogenous information and exogenous influences, agent-differences & stochasticity/uncertainty

Micro \rightarrow Macro-variables: multi-time

2. Networks retrieving information by queries

Peer-to-peer networks

- Computer connectivity networks
 - Operational connections: e.g. file-sharing
 - Distinct from physical connection network
 - Nodes constantly leaving and joining the network
 - Under churn
- Need fast file-finding
 - Scale-free structure: $p(k) \sim k^{-\gamma}$
 - Local search strategies scale sub-linearly with size

Can we devise easily-implemented "networks under churn" with power-law connectivity distributions ?

Preferential attachment

Barabasi-Albert

- Addition of a new node
 - Assign to each node an attractiveness:

$$A_i \propto k_i$$

- Connect new node to *m* existing nodes chosen randomly with probabilities proportional to their attractivenesses
- Needs information about connectivity of all nodes
- Growing network
 - Yields power-law distribution: $p(k) \propto k^{-\gamma}$

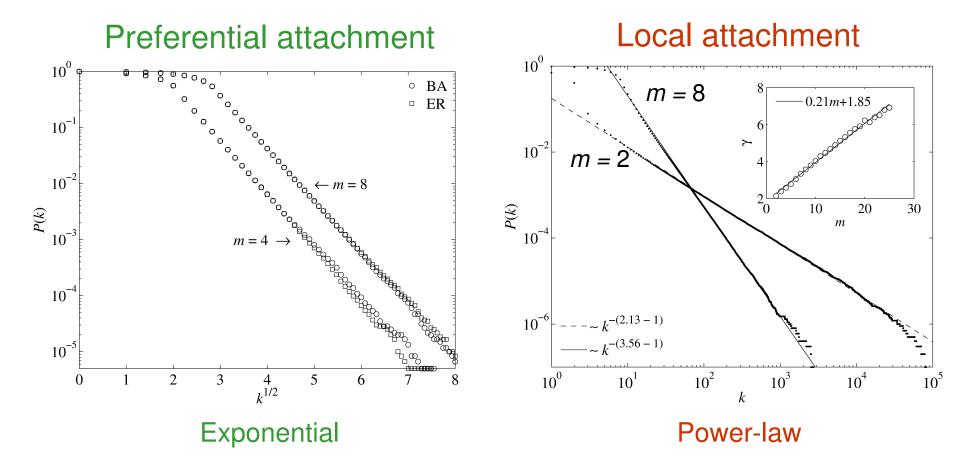
- Network under churn
 - P(k) decays faster than power-law

Local attachment Bauke-S

- Addition of a new node, two-step procedure
 - Pick any other node randomly: no preference
 - Do not connect to that node!
 - Connect to a nearest neighbour of that node
 - Repeat *m* times
- Yields power-law connectivity for both growing networks and networks under churn
- Needs only local information

c.f. Gnutella cache-ponging

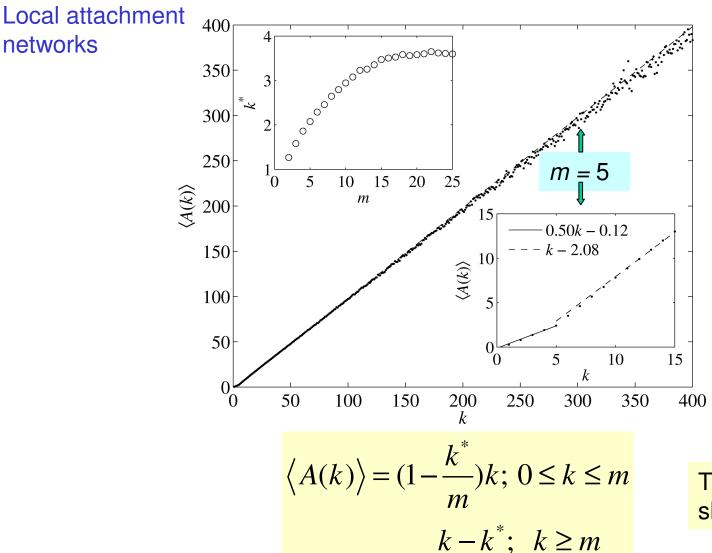
Cumulative degree distributions



Both are for networks of mean connectivity *m* under churn

Hereafter consider just local attachment

Mean attractiveness



Top left inset shows *k**(*m*)

Conclusion so far

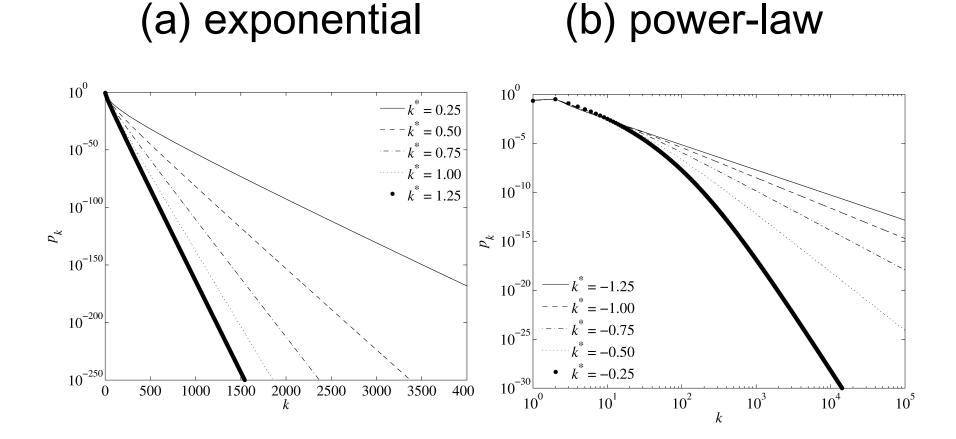
- 2-stage local attachment
 - Gives power-law scale-free networks
 - With their search-speed advantages
 - Without needing data on all peers
 - Recall
 - (i) random unbiased connection to peer A
 - (ii) ask who are his neighbours
 - (iii) connect randomly without bias to one of them
- Offers possibilities as a practical protocol

Topological transitions

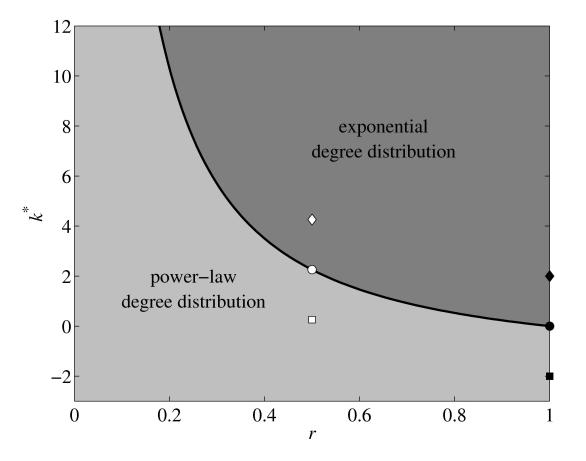
- Networks under churn
 - E.g. At each time step:
 - Prob r: remove randomly chosen node
 - Prob 1: add new node and from it *m* new links
 - Choose the nodes to connect to randomly with attractiveness

$$A_{k} = k + \mathcal{E}(k, k^{*}); \quad \mathcal{E}(k, k^{*}) = \begin{cases} kk^{*} / m & \text{if } k \leq m \\ k^{*} & \text{else} \end{cases}$$

Power-law or exponential



Phase diagram



Similar phase diagrams for other churn models

Analysis

$$\left|\delta_{k,m} + \frac{m}{\langle A \rangle} \{A_{k-1}p_{k-1} - A_{k}p_{k}\} + r(k+1)p_{k+1} - (rk+1)p_{k} = 0; \\ \langle A \rangle = \sum_{k} A_{k}p_{k}$$

Define $k^* = \langle A \rangle - \langle k \rangle$

Transition

$$k_c^* = \frac{m(1-r)}{r(1-r)}$$

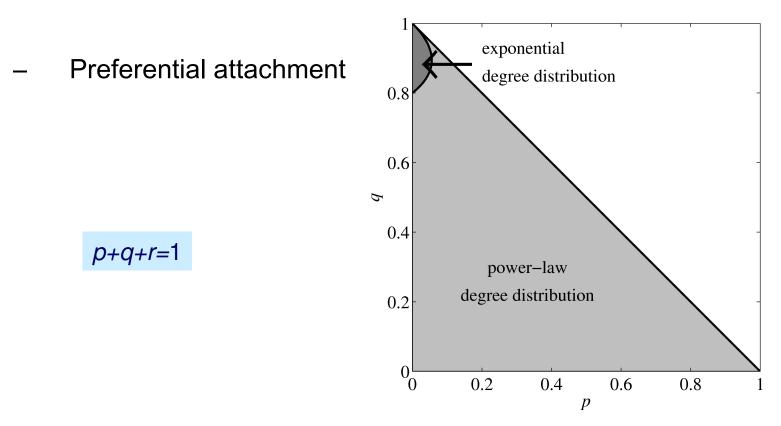
Can calculate behaviour of p_k
k*<k_c*: power-law
k*>k_c*: exponential with power-law corrections

 $p_{k} = Ck^{\alpha}\beta^{k}$ $k < k_{c}: \beta = 1; \ \alpha = 1 - m - \frac{\langle A \rangle(1 - r) + m}{m - \langle A \rangle r} < 0$ $\rightarrow \infty \text{ as approach transition}$ $k > k_{c}: \ \alpha = -\frac{m(3 - r) + k^{*}(1 - r^{2})}{m(1 - r) - k^{*}}r(1 + r)$ $\rightarrow -\frac{(3 - r)}{(1 - r)} \text{ as } k^{*} \rightarrow \infty$

Another example

At each step:

- Insert *m* new edges with probability *p*
- Rewire *m* links randomly with probability *q*
- Add new node (*m* links) with probability *r*



Conclusion

- Topological transitions as attachment rules varied
- Negative perturbations of linear attractiveness tend to stabilize power laws
- In view of ubiquity of power-laws in nature, do such pertubations occur in real world networks?