Quantum Graphical Models and Belief Propagation

David Poulin

Center for the Physics of Information
California Institute of Technology

Joint work with: Matt Leifer and Ersen Bilgin

Classical and Quantum Information Theory
Santa Fe, March 2008
1. Graphical models
2. Belief propagation
3. Quantum graphical models
4. Quantum belief propagation
5. Examples
 - Quantum turbo-codes
 - Many-body simulations
Graphical models

Belief propagation

Quantum graphical models

Quantum belief propagation

Examples
- Quantum turbo-codes
- Many-body simulations
Graphical models

- Bayesian networks (artificial intelligence).
- Factor graphs (image recognition).
- Tanner graphs (coding theory).
- Markov networks (statistical physics).
- etc.

Common features:
- A (sparse) graph $G = (V, E)$.
- Random variables u, each associated with a vertex $u \in V$.
- An efficiently specifiable distribution $P(V) = P(u_1, u_2, \ldots)$.
- Edges $e = (u, v)$ encode some kind of dependency relation in P.
Graphical models

- Bayesian networks (artificial intelligence).
- Factor graphs (image recognition).
- Tanner graphs (coding theory).
- Markov networks (statistical physics).
- etc.

Common features:
- A (sparse) graph $G = (V, E)$.
- Random variables u, each associated with a vertex $u \in V$.
- An efficiently specifiable distribution $P(V) = P(u_1, u_2, \ldots)$.
- Edges $e = (u, v)$ encode some kind of dependency relation in P.
Graphical models

- Bayesian networks (artificial intelligence).
- Factor graphs (image recognition).
- Tanner graphs (coding theory).
- Markov networks (statistical physics).
- etc.

Common features:
- A (sparse) graph $G = (V, E)$.
- Random variables u, each associated with a vertex $u \in V$.
- An efficiently specifiable distribution $P(V) = P(u_1, u_2, \ldots)$.
- Edges $e = (u, v)$ encode some kind of dependency relation in P.
Graphical models

- Bayesian networks (artificial intelligence).
- Factor graphs (image recognition).
- Tanner graphs (coding theory).
- Markov networks (statistical physics).
- etc.

Common features:
- A (sparse) graph $G = (V, E)$.
- Random variables u, each associated with a vertex $u \in V$.
- An efficiently specifiable distribution $P(V) = P(u_1, u_2, \ldots)$.
- Edges $e = (u, v)$ encode some kind of dependency relation in P.
Graphical models

- Bayesian networks (artificial intelligence).
- Factor graphs (image recognition).
- Tanner graphs (coding theory).
- Markov networks (statistical physics).
- etc.

Common features:

- A (sparse) graph \(G = (V, E) \).
- Random variables \(u \), each associated with a vertex \(u \in V \).
- An efficiently specifiable distribution \(P(V) = P(u_1, u_2, \ldots) \).
- Edges \(e = (u, v) \) encode some kind of dependency relation in \(P \).
Graphical models

- Bayesian networks (artificial intelligence).
- Factor graphs (image recognition).
- Tanner graphs (coding theory).
- Markov networks (statistical physics).
- etc.

Common features:

- A (sparse) graph $G = (V, E)$.
- Random variables u, each associated with a vertex $u \in V$.
- An efficiently specifiable distribution $P(V) = P(u_1, u_2, \ldots)$.
- Edges $e = (u, v)$ encode some kind of dependency relation in P.
Graphical models

- Bayesian networks (artificial intelligence).
- Factor graphs (image recognition).
- Tanner graphs (coding theory).
- Markov networks (statistical physics).
- etc.

Common features:

- A (sparse) graph $G = (V, E)$.
- Random variables u, each associated with a vertex $u \in V$.
- An efficiently specifiable distribution $P(V) = P(u_1, u_2, \ldots)$.
- Edges $e = (u, v)$ encode some kind of dependency relation in P.
Graphical models

- Bayesian networks (artificial intelligence).
- Factor graphs (image recognition).
- Tanner graphs (coding theory).
- Markov networks (statistical physics).
- etc.

Common features:

- A (sparse) graph $G = (V, E)$.
- Random variables u, each associated with a vertex $u \in V$.
- An efficiently specifiable distribution $P(V) = P(u_1, u_2, \ldots)$.
- Edges $e = (u, v)$ encode some kind of dependency relation in P.
Let A, B, and C be three random variables with distribution $P(A, B, C)$. We say that A and C are independent given B if

- Conditional mutual information vanishes $I(A : C|B) = 0$.
- $P(A, B, C) = P(A)P(B|A)P(C|B)$ which suggests $A \rightarrow B \rightarrow C$.
- $P(A, B, C) = P(A|B)P(B|C)P(C)$ which suggests $A \leftarrow B \leftarrow C$.
- $P(A, B, C) = P(A|B)P(B)P(C|B)$ which suggests $A \leftarrow B \rightarrow C$.

Defining the mutual distribution $P(A : B) = \frac{P(A,B)}{P(A)P(B)}$, we can characterize conditional independence by

- $P(A, B, C) = P(A)P(B)P(C)P(A : B)P(B : C)$ which does not suggest a causal relation.
Let A, B, and C be three random variables with distribution $P(A, B, C)$. We say that A and C are independent given B if

- Conditional mutual information vanishes $I(A : C|B) = 0$.

- $P(A, B, C) = P(A)P(B|A)P(C|B)$ which suggests $A \rightarrow B \rightarrow C$.
- $P(A, B, C) = P(A|B)P(B|C)P(C)$ which suggests $A \leftarrow B \leftarrow C$.
- $P(A, B, C) = P(A|B)P(B)P(C|B)$ which suggests $A \leftarrow B \rightarrow C$.

Defining the mutual distribution $P(A : B) = \frac{P(A, B)}{P(A)P(B)}$, we can characterize conditional independence by

- $P(A, B, C) = P(A)P(B)P(C)P(A : B)P(B : C)$ which does not suggest a causal relation.
Let A, B, and C be three random variables with distribution $P(A, B, C)$. We say that A and C are independent given B if

- Conditional mutual information vanishes $I(A : C | B) = 0$.
- $P(A, B, C) = P(A)P(B|A)P(C|B)$ which suggests $A \rightarrow B \rightarrow C$.
- $P(A, B, C) = P(A|B)P(B|C)P(C)$ which suggests $A \leftarrow B \leftarrow C$.
- $P(A, B, C) = P(A|B)P(B)P(C|B)$ which suggests $A \leftarrow B \rightarrow C$.

Defining the mutual distribution $P(A : B) = \frac{P(A, B)}{P(A)P(B)}$, we can characterize conditional independence by

- $P(A, B, C) = P(A)P(B)P(C)P(A : B)P(B : C)$ which does not suggest a causal relation.
Conditional independence

Let A, B, and C be three random variables with distribution $P(A, B, C)$. We say that A and C are independent given B if

- Conditional mutual information vanishes $I(A : C|B) = 0$.
- $P(A, B, C) = P(A)P(B|A)P(C|B)$ which suggests $A \rightarrow B \rightarrow C$.
- $P(A, B, C) = P(A|B)P(B|C)P(C)$ which suggests $A \leftarrow B \leftarrow C$.
- $P(A, B, C) = P(A|B)P(B)P(C|B)$ which suggests $A \leftarrow B \rightarrow C$.

Defining the mutual distribution $P(A : B) = \frac{P(A,B)}{P(A)P(B)}$, we can characterize conditional independence by

- $P(A, B, C) = P(A)P(B)P(C)P(A : B)P(B : C)$ which does not suggest a causal relation.
Graphical models

Conditional independence

Let A, B, and C be three random variables with distribution $P(A, B, C)$. We say that A and C are independent given B if

- Conditional mutual information vanishes $I(A : C|B) = 0$.
- $P(A, B, C) = P(A)P(B|A)P(C|B)$ which suggests $A \rightarrow B \rightarrow C$.
- $P(A, B, C) = P(A|B)P(B|C)P(C)$ which suggests $A \leftarrow B \leftarrow C$.
- $P(A, B, C) = P(A|B)P(B)P(C|B)$ which suggests $A \leftarrow B \rightarrow C$.

Defining the mutual distribution $P(A : B) = \frac{P(A, B)}{P(A)P(B)}$, we can characterize conditional independence by

- $P(A, B, C) = P(A)P(B)P(C)P(A : B)P(B : C)$ which does not suggest a causal relation.
Conditional independence

Let A, B, and C be three random variables with distribution $P(A, B, C)$. We say that A and C are independent given B if

- Conditional mutual information vanishes $I(A : C | B) = 0$.
- $P(A, B, C) = P(A)P(B | A)P(C | B)$ which suggests $A \rightarrow B \rightarrow C$.
- $P(A, B, C) = P(A | B)P(B | C)P(C)$ which suggests $A \leftarrow B \leftarrow C$.
- $P(A, B, C) = P(A | B)P(B)P(C | B)$ which suggests $A \leftarrow B \rightarrow C$.

Defining the mutual distribution $P(A : B) = \frac{P(A, B)}{P(A)P(B)}$, we can characterize conditional independence by

- $P(A, B, C) = P(A)P(B)P(C)P(A : B)P(B : C)$ which does not suggest a causal relation.
Let \(A, B, \) and \(C \) be three random variables with distribution \(P(A, B, C) \). We say that \(A \) and \(C \) are independent given \(B \) if

- Conditional mutual information vanishes \(I(A : C | B) = 0 \).
- \(P(A, B, C) = P(A)P(B|A)P(C|B) \) which suggests \(A \to B \to C \).
- \(P(A, B, C) = P(A|B)P(B|C)P(C) \) which suggests \(A \leftarrow B \leftarrow C \).
- \(P(A, B, C) = P(A|B)P(B)P(C|B) \) which suggests \(A \leftarrow B \to C \).

Re-defining the mutual distribution \(P(A : B) = \frac{P(A, B)}{P(A)P(B)} \), we can characterize conditional independence by

- \(P(A, B, C) = P(A)P(B)P(C)P(A : B)P(B : C) \) which does not suggest a causal relation.
Conditional independence

Let A, B, and C be three random variables with distribution $P(A, B, C)$. We say that A and C are independent given B if

- Conditional mutual information vanishes $I(A : C|B) = 0$.
- $P(A, B, C) = P(A)P(B|A)P(C|B)$ which suggests $A \rightarrow B \rightarrow C$.
- $P(A, B, C) = P(A|B)P(B|C)P(C)$ which suggests $A \leftarrow B \leftarrow C$.
- $P(A, B, C) = P(A|B)P(B)P(C|B)$ which suggests $A \leftarrow B \rightarrow C$.

Defining the mutual distribution $P(A : B) = \frac{P(A, B)}{P(A)P(B)}$, we can characterize conditional independence by

- $P(A, B, C) = P(A)P(B)P(C)P(A : B)P(B : C)$ which does not suggest a causal relation.
Conditional independence

Let A, B, and C be three random variables with distribution $P(A, B, C)$. We say that A and C are independent given B if

- Conditional mutual information vanishes $I(A : C|B) = 0$.
- $P(A, B, C) = P(A)P(B|A)P(C|B)$ which suggests $A \to B \to C$.
- $P(A, B, C) = P(A|B)P(B|C)P(C)$ which suggests $A \leftarrow B \leftarrow C$.
- $P(A, B, C) = P(A|B)P(B)P(C|B)$ which suggests $A \leftarrow B \to C$.

Defining the mutual distribution $P(A : B) = \frac{P(A,B)}{P(A)P(B)}$, we can characterize conditional independence by

- $P(A, B, C) = P(A)P(B)P(C)P(A : B)P(B : C)$ which does not suggest a causal relation.
Conditional independence

Let A, B, and C be three random variables with distribution $P(A, B, C)$. We say that A and C are independent given B if

- Conditional mutual information vanishes $I(A : C|B) = 0$.
- $P(A, B, C) = P(A)P(B|A)P(C|B)$ which suggests $A \rightarrow B \rightarrow C$.
- $P(A, B, C) = P(A|B)P(B|C)P(C)$ which suggests $A \leftarrow B \leftarrow C$.
- $P(A, B, C) = P(A|B)P(B)P(C|B)$ which suggests $A \leftarrow B \rightarrow C$.

Defining the mutual distribution $P(A : B) = \frac{P(A,B)}{P(A)P(B)}$, we can characterize conditional independence by

- $P(A, B, C) = P(A)P(B)P(C)P(A : B)P(B : C)$ which does not suggest a causal relation.

![Diagram](image_url)
Given a graph $G = (V, E)$ and a distribution $P(V)$, the pair $(G, P(V))$ forms a Markov Random Field iff:

- For all $U \subset V$, $I(U : V - U - n(U)|n(U)) = 0$.
- The correlations are shielded by the neighbors.
Markov random fields

Given a graph $G = (V, E)$ and a distribution $P(V)$, the pair $(G, P(V))$ forms a Markov Random Field iff:

- For all $U \subset V$, $I(U : V - U - n(U)|n(U)) = 0$.
- The correlations are shielded by the neighbors.
Given a graph \(G = (V, E) \) and a distribution \(P(V) \), the pair \((G, P(V))\) forms a Markov Random Field iff:

- For all \(U \subset V \), \(I(U : V - U - n(U) | n(U)) = 0 \).
- The correlations are shielded by the neighbors.

David Poulin (Caltech)
Given a graph $G = (V, E)$ and a distribution $P(V)$, the pair $(G, P(V))$ forms a Markov Random Field iff:

- For all $U \subset V$, $I(U : V - U - n(U)|n(U)) = 0$.
- The correlations are shielded by the neighbors.
Given a graph $G = (V, E)$ and a distribution $P(V)$, the pair $(G, P(V))$ forms a **Markov Random Field** iff:

- For all $U \subset V$, $I(U : V - U - n(U)|n(U)) = 0$.
- The correlations are shielded by the neighbors.

![Diagram of a graph with nodes and edges, illustrating the concept of Markov Random Fields.](attachment:diagram.png)
Given a graph $G = (V, E)$ and a distribution $P(V)$, the pair $(G, P(V))$ forms a Markov Random Field iff:

- For all $U \subset V$, $I(U : V - U - n(U)|n(U)) = 0$.
- The correlations are shielded by the neighbors.

![Graphical model diagram](image-url)
Theorem (Hammersley-Clifford)

The pair \((G, P(V))\) is a positive \((P > 0)\) random Markov field iff

\[
P(V) = \frac{1}{Z} \prod_{C \in c(G)} \psi(C).
\]

Special case: bifactor states (pairwise RMF)

When largest clique size is 2 (2d square lattice) or when \(\psi(C)\) is trivial for \(|C| > 2\), MRF are of the form

\[
P(V) = \frac{1}{Z} \prod_{v \in V} \mu(v) \prod_{(u, v) \in E} \nu(u : v)
\]

\[
= \frac{1}{Z} \exp \left\{ -\beta \left(\sum_v h_v + \sum_{\langle u, v \rangle} k_{uv} \right) \right\}.
\]
Hammersley-Clifford Theorem

Theorem (Hammersley-Clifford)

The pair \((G, P(V))\) is a positive \((P > 0)\) random Markov field iff

\[
P(V) = \frac{1}{Z} \prod_{C \in \mathcal{C}(G)} \psi(C).
\]

Special case: bifactor states (pairwise RMF)

When largest clique size is 2 (2d square lattice) or when \(\psi(C)\) is trivial for \(|C| > 2\), MRF are of the form

\[
P(V) = \frac{1}{Z} \prod_{v \in V} \mu(v) \prod_{(u,v) \in E} \nu(u : v)
= \frac{1}{Z} \exp \left\{ -\beta \left(\sum_v h_v + \sum_{\langle u,v \rangle} k_{uv} \right) \right\}.
\]
Outline

1. Graphical models
2. Belief propagation
3. Quantum graphical models
4. Quantum belief propagation
5. Examples
 - Quantum turbo-codes
 - Many-body simulations
Description of the algorithm

Task (basic case)

Given a graph $G = (V, E)$ and a bifactor distribution $P(V)$ on G, compute marginals

$$P(v) = \sum_{V \setminus v} P(V).$$

Algorithm architecture

- One processor per random variable v.
- Messages exchanged between processors related by an edge.
- Outgoing messages at v depend on local "fields" $\mu(v)$ and $\nu(u : v)$ and received messages at v.
- The marginal $P(v)$ is estimated by a belief $b(v)$ that depends on the received messages at v and the local fields.
- Exact when G is a tree and complexity = $\text{diameter}(G)$.
- Good heuristic on loopy graphs.
Belief propagation

Description of the algorithm

Task (basic case)

Given a graph $G = (V, E)$ and a bifactor distribution $P(V)$ on G, compute marginals

$$P(v) = \sum_{V-v} P(V).$$

Algorithm architecture

- One processor per random variable v.
- Messages exchanged between processors related by an edge.
- Outgoing messages at v depend on local "fields" $\mu(v)$ and $\nu(u : v)$ and received messages at v.
- The marginal $P(v)$ is estimated by a belief $b(v)$ that depends on the received messages at v and the local fields.
- Exact when G is a tree and complexity = diameter(G).
- Good heuristic on loopy graphs.
Belief propagation

Description of the algorithm

Task (basic case)

Given a graph $G = (V, E)$ and a bifactor distribution $P(V)$ on G, compute marginals

$$P(v) = \sum_{V \setminus v} P(V).$$

Algorithm architecture

- One processor per random variable v.
- Messages exchanged between processors related by an edge.
 - Outgoing messages at v depend on local "fields" $\mu(v)$ and $\nu(u : v)$ and received messages at v.
 - The marginal $P(v)$ is estimated by a belief $b(v)$ that depends on the received messages at v and the local fields.
- Exact when G is a tree and complexity = diameter(G).
- Good heuristic on loopy graphs.
Description of the algorithm

Task (basic case)
Given a graph $G = (V, E)$ and a bifactor distribution $P(V)$ on G, compute marginals

$$P(v) = \sum_{V \setminus v} P(V).$$

Algorithm architecture
- One processor per random variable v.
- Messages exchanged between processors related by an edge.
- Outgoing messages at v depend on local "fields" $\mu(v)$ and $\nu(u : v)$ and received messages at v.
- The marginal $P(v)$ is estimated by a belief $b(v)$ that depends on the received messages at v and the local fields.
- Exact when G is a tree and complexity = $\text{diameter}(G)$.
- Good heuristic on loopy graphs.
Description of the algorithm

Task (basic case)

Given a graph \(G = (V, E) \) and a bifactor distribution \(P(V) \) on \(G \), compute marginals

\[
P(v) = \sum_{V-v} P(V).
\]

Algorithm architecture

- One processor per random variable \(v \).
- Messages exchanged between processors related by an edge.
- Outgoing messages at \(v \) depend on local "fields" \(\mu(v) \) and \(\nu(u : v) \) and received messages at \(v \).
- The marginal \(P(v) \) is estimated by a belief \(b(v) \) that depends on the received messages at \(v \) and the local fields.
- Exact when \(G \) is a tree and complexity = \text{diameter}(G).
- Good heuristic on loopy graphs.
Belief propagation

Description of the algorithm

Task (basic case)

Given a graph \(G = (V, E) \) and a bifactor distribution \(P(V) \) on \(G \), compute marginals

\[
P(v) = \sum_{V-v} P(V).
\]

Algorithm architecture

- One processor per random variable \(v \).
- Messages exchanged between processors related by an edge.
- Outgoing messages at \(v \) depend on local "fields" \(\mu(v) \) and \(\nu(u:v) \) and received messages at \(v \).
- The marginal \(P(v) \) is estimated by a belief \(b(v) \) that depends on the received messages at \(v \) and the local fields.
- Exact when \(G \) is a tree and complexity = diameter(\(G \)).
- Good heuristic on loopy graphs.
Belief propagation

Description of the algorithm

Task (basic case)

Given a graph $G = (V, E)$ and a bifactor distribution $P(V)$ on G, compute marginals

$$P(v) = \sum_{V \setminus v} P(V).$$

Algorithm architecture

- One processor per random variable v.
- Messages exchanged between processors related by an edge.
- Outgoing messages at v depend on local "fields" $\mu(v)$ and $\nu(u : v)$ and received messages at v.
- The marginal $P(v)$ is estimated by a belief $b(v)$ that depends on the received messages at v and the local fields.
- Exact when G is a tree and complexity $= \text{diameter}(G)$.
- Good heuristic on loopy graphs.
Belief propagation algorithm

Algorithm

- **Initialization** \(m_{u \rightarrow v}(v) = cte. \)
- **Iterations** \(m_{u \rightarrow v}(v) \propto \sum_u \mu(u) \nu(u : v) \prod_{v' \in n(u) - v} m_{v' \rightarrow u}(u). \)

- **Beliefs** \(b(u) \propto \mu(u) \prod_{v \in n(u)} m_{v \rightarrow u}(u). \)
- \(b(u, v) \propto \mu(u) \mu(v) \nu(u : v) \prod_{w \in n(u) - v} m_{w \rightarrow u}(u) \prod_{w \in n(v) - u} m_{w \rightarrow v}(v). \)
Algorithm

- **Initialization** \(m_{u \rightarrow v} (v) = cte \).
- **Iterations** \(m_{u \rightarrow v} (v) \propto \sum_u \mu (u) \nu (u : v) \prod_{v' \in n(u) - v} m_{v' \rightarrow u} (u) \).
- **Beliefs** \(b(u) \propto \mu (u) \prod_{v \in n(u)} m_{v \rightarrow u} (u) \).
- \(b(u, v) \propto \mu (u) \mu (v) \nu (u : v) \prod_{w \in n(u) - v} m_{w \rightarrow u} (u) \prod_{w \in n(v) - u} m_{w \rightarrow v} (v) \).
Belief propagation

Algorithm

- Initialization \(m_{u \rightarrow v}(v) = \text{cte.} \)
- Iterations \(m_{u \rightarrow v}(v) \propto \sum_u \mu(u) \nu(u : v) \prod_{v' \in n(u) - v} m_{v' \rightarrow u}(u) \).

Beliefs \(b(u) \propto \mu(u) \prod_{v \in n(u)} m_{v \rightarrow u}(u) \).
- \(b(u, v) \propto \mu(u) \mu(v) \nu(u : v) \prod_{w \in n(u) - v} m_{w \rightarrow u}(u) \prod_{w \in n(v) - u} m_{w \rightarrow v}(v) \).
Belief propagation algorithm

Algorithm

- Initialization \(m_{u \rightarrow v}(v) = cte \).
- Iterations \(m_{u \rightarrow v}(v) \propto \sum_u \mu(u) \nu(u : v) \prod_{v' \in n(u) - v} m_{v' \rightarrow u}(u) \).

![Belief propagation diagram]

- Beliefs \(b(u) \propto \mu(u) \prod_{v \in n(u)} m_{v \rightarrow u}(u) \).
- \(b(u, v) \propto \mu(u) \mu(v) \nu(u : v) \prod_{w \in n(u) - v} m_{w \rightarrow u}(u) \prod_{w \in n(v) - u} m_{w \rightarrow v}(v) \).
Quantum graphical models

Outline

1. Graphical models
2. Belief propagation
3. Quantum graphical models
4. Quantum belief propagation
5. Examples
 - Quantum turbo-codes
 - Many-body simulations
A (sparse) graph $G = (V, E)$.
- Each vertex u is associated a quantum system (spin) u with Hilbert space \mathcal{H}_u.
- An efficiently specifiable quantum state ρ_V on $\mathcal{H}_V = \bigotimes_{u \in V} \mathcal{H}_u$.
- Edges $e = (u, v)$ encode some kind of dependency relation in ρ_V.

How to specify ρ_V?
- Many possible generalizations of classical bifactor states.
- They have applications in different contexts:
 - Quantum many-body.
 - Quantum error correction.
A (sparse) graph $G = (V, E)$.

Each vertex u is associated a quantum system (spin) u with Hilbert space \mathcal{H}_u.

An efficiently specifiable quantum state ρ_V on $\mathcal{H}_V = \bigotimes_{u \in V} \mathcal{H}_u$.

Edges $e = (u, v)$ encode some kind of dependency relation in ρ_V.

How to specify ρ_V?

- Many possible generalizations of classical bifactor states.
- They have applications in different contexts:
 - Quantum many-body.
 - Quantum error correction.
A (sparse) graph $G = (V, E)$.

Each vertex u is associated a quantum system (spin) u with Hilbert space \mathcal{H}_u.

An efficiently specifiable quantum state ρ_V on $\mathcal{H}_V = \bigotimes_{u \in V} \mathcal{H}_u$.

Edges $e = (u, v)$ encode some kind of dependency relation in ρ_V.

How to specify ρ_V?

- Many possible generalizations of classical bifactor states.
- They have applications in different contexts:
 - Quantum many-body.
 - Quantum error correction.
A (sparse) graph $G = (V, E)$.

Each vertex u is associated with a quantum system (spin) u with Hilbert space \mathcal{H}_u.

An efficiently specifiable quantum state ρ_V on $\mathcal{H}_V = \bigotimes_{u \in V} \mathcal{H}_u$.

Edges $e = (u, v)$ encode some kind of dependency relation in ρ_V.

How to specify ρ_V?

- Many possible generalizations of classical bifactor states.
- They have applications in different contexts:
 - Quantum many-body.
 - Quantum error correction.
A (sparse) graph $G = (V, E)$.
Each vertex u is associated a quantum system (spin) u with Hilbert space H_u.
An efficiently specifiable quantum state ρ_V on $H_V = \bigotimes_{u \in V} H_u$.
Edges $e = (u, v)$ encode some kind of dependency relation in ρ_V.

How to specify ρ_V?

- Many possible generalizations of classical bifactor states.
 - They have applications in different contexts:
 - Quantum many-body.
 - Quantum error correction.
A (sparse) graph $G = (V, E)$.
Each vertex u is associated a quantum system (spin) u with Hilbert space \mathcal{H}_u.
An efficiently specifiable quantum state ρ_V on $\mathcal{H}_V = \bigotimes_{u \in V} \mathcal{H}_u$.
Edges $e = (u, v)$ encode some kind of dependency relation in ρ_V.

How to specify ρ_V?

- Many possible generalizations of classical bifactor states.
- They have applications in different contexts:
 - Quantum many-body.
 - Quantum error correction.
Bifactor state: \(P(V) = \frac{1}{Z} \prod_{v \in V} \mu(v) \prod_{(u,v) \in E} \nu(u : v) \).

Quantum generalization: \(\mu_u \) and \(\nu_{u : v} \) operators on \(\mathcal{H}_u \) and \(\mathcal{H}_u \otimes \mathcal{H}_v \) respectively.

Problems:

- Ambiguity in order of the terms.
- Not necessarily positive.

Define the family of products: \(A \star^{(n)} B = (A^{1/2n} B^{1/n} A^{1/2n})^n \)

- \(n = 1 \): \(A \star B = A^{1/2} B A^{1/2} \) (measurement, QEC).
- \(n = \infty \): \(A \otimes B = \exp(\log A + \log B) \) (Hamiltonian, many-body).
- Intermediate \(n \): Trotter-Suzuki decomposition.
Bifactor state: \(P(V) = \frac{1}{Z} \prod_{v \in V} \mu(v) \prod_{(u,v) \in E} \nu(u : v) \).
Quantum generalization: \(\mu_u \) and \(\nu_{u:v} \) operators on \(\mathcal{H}_u \) and \(\mathcal{H}_u \otimes \mathcal{H}_v \) respectively.

Problems:

- Ambiguity in order of the terms.
- Not necessarily positive.

Define the family of products: \(A \star^{(n)} B = (A^{1/2n} B^{1/n} A^{1/2n})^n \)

- \(n = 1 \): \(A \star B = A^{1/2} BA^{1/2} \) (measurement, QEC).
- \(n = \infty \): \(A \odot B = \exp(\log A + \log B) \) (Hamiltonian, many-body).
- Intermediate \(n \): Trotter-Suzuki decomposition.
Bifactor state: $P(V) = \frac{1}{Z} \prod_{v \in V} \mu(v) \prod_{(u,v) \in E} \nu(u : v)$.
Quantum generalization: μ_u and $\nu_{u:v}$ operators on \mathcal{H}_u and $\mathcal{H}_u \otimes \mathcal{H}_v$ respectively.

Problems:
- Ambiguity in order of the terms.
- Not necessarily positive.

Define the family of products: $A \star^{(n)} B = (A_{2^n}^1 B_{2^n}^1 A_{2^n}^1)^n$
- $n = 1$: $A \star B = A_2^1 B A_2^1$ (measurement, QEC).
- $n = \infty$: $A \circ B = \exp(\log A + \log B)$ (Hamiltonian, many-body).
- Intermediate n: Trotter-Suzuki decomposition.
Bifactor state: $P(V) = \frac{1}{Z} \prod_{v \in V} \mu(v) \prod_{(u,v) \in E} \nu(u : v)$.
Quantum generalization: μ_u and $\nu_{u:v}$ operators on \mathcal{H}_u and $\mathcal{H}_u \otimes \mathcal{H}_v$ respectively.

Problems:

- Ambiguity in order of the terms.
- Not necessarily positive.

Define the family of products: $A \star^{(n)} B = (A^{1 \over 2n} B^{1 \over n} A^{1 \over 2n})^n$

- $n = 1$: $A \star B = A^{1 \over 2} B A^{1 \over 2}$ (measurement, QEC).
- $n = \infty$: $A \circ B = \exp(\log A + \log B)$ (Hamiltonian, many-body).
- Intermediate n: Trotter-Suzuki decomposition.
Bifactor state: \(P(V) = \frac{1}{Z} \prod_{v \in V} \mu(v) \prod_{(u,v) \in E} \nu(u : v). \)

Quantum generalization: \(\mu_u \) and \(\nu_{u:v} \) operators on \(\mathcal{H}_u \) and \(\mathcal{H}_u \otimes \mathcal{H}_v \) respectively.

Problems:
- Ambiguity in order of the terms.
- Not necessarily positive.

Define the family of products: \(A \star^{(n)} B = (A^{1/2n} B^{1/n} A^{1/2n})^n \)

- \(n = 1 \): \(A \star B = A^{1/2} B A^{1/2} \) (measurement, QEC).
- \(n = \infty \): \(A \otimes B = \exp(\log A + \log B) \) (Hamiltonian, many-body).
- Intermediate \(n \): Trotter-Suzuki decomposition.
Bifactor state: $P(V) = \frac{1}{Z} \prod_{v \in V} \mu(v) \prod_{(u,v) \in E} \nu(u:v)$.

Quantum generalization: μ_u and $\nu_{u:v}$ operators on \mathcal{H}_u and $\mathcal{H}_u \otimes \mathcal{H}_v$ respectively.

Problems:

- Ambiguity in order of the terms.
- Not necessarily positive.

Define the family of products: $A \star^{(n)} B = (A^{\frac{1}{2n}} B^{\frac{1}{n}} A^{\frac{1}{2n}})^n$

- $n = 1$: $A \star B = A^{\frac{1}{2}} B A^{\frac{1}{2}}$ (measurement, QEC).
- $n = \infty$: $A \otimes B = \exp(\log A + \log B)$ (Hamiltonian, many-body).
- Intermediate n: Trotter-Suzuki decomposition.
Bifactor state: \[P(V) = \frac{1}{Z} \prod_{v \in V} \mu(v) \prod_{(u,v) \in E} \nu(u : v). \]
Quantum generalization: \(\mu_u \) and \(\nu_{u:v} \) operators on \(\mathcal{H}_u \) and \(\mathcal{H}_u \otimes \mathcal{H}_v \) respectively.

Problems:
- Ambiguity in order of the terms.
- Not necessarily positive.

Define the family of products: \[A \star^{(n)} B = (A^{1/2n} B^{1/n} A^{1/2n})^n \]
- \(n = 1 \): \(A \star B = A^{1/2} B A^{1/2} \) (measurement, QEC).
- \(n = \infty \): \(A \circ B = \exp(\log A + \log B) \) (Hamiltonian, many-body).
- Intermediate \(n \): Trotter-Suzuki decomposition.
Bifactor state: \(P(V) = \frac{1}{Z} \prod_{v \in V} \mu(v) \prod_{(u,v) \in E} \nu(u:v). \)

Quantum generalization: \(\mu_u \) and \(\nu_{u:v} \) operators on \(\mathcal{H}_u \) and \(\mathcal{H}_u \otimes \mathcal{H}_v \) respectively.

Problems:

- Ambiguity in order of the terms.
- Not necessarily positive.

Define the family of products: \(A \star^{(n)} B = (A^{1_{2n}} B^{1_n} A^{1_{2n}})^n \)

- \(n = 1: A \star B = A^{1_2} B A^{1_2} \) (measurement, QEC).
- \(n = \infty: A \odot B = \exp(\log A + \log B) \) (Hamiltonian, many-body).
- Intermediate \(n \): Trotter-Suzuki decomposition.
In analogy with the classical case, define

- **Conditional state** $\rho_{A|B}^{(n)} = \rho_B^{-1} \star^{(n)} \rho_{AB}$.

- **Mutual state** $\rho_{A:B}^{(n)} = (\rho_A^{-1} \rho_B^{-1}) \star^{(n)} \rho_{AB}$.
Quantum conditional independence

Given three quantum systems A, B, and C and a joint state ρ_{ABC}, we say that A and C are independent given B if $I(A : C|B) = 0$ which implies:

- $\rho_{ABC} = \rho_A \star^{(n)} \rho_{B|A} \star^{(n)} \rho^{(n)}_{C|B}$ which suggests $A \rightarrow B \rightarrow C$.
- $\rho_{ABC} = \rho_C \star^{(n)} \rho^{(n)}_{A|B} \star^{(n)} \rho^{(n)}_{B|C}$ which suggests $A \leftarrow B \leftarrow C$.
- $\rho_{ABC} = \rho_B \star^{(n)} \rho^{(n)}_{A|B} \star^{(n)} \rho^{(n)}_{C|B}$ which suggests $A \leftarrow B \rightarrow C$.

These conditions differ for different values of n and differ between each other.

$\rho_{ABC} = (\rho_A \rho_B \rho_C) \star^{(n)} (\rho^{(n)}_{A:B} \rho^{(n)}_{B:C})$ is a quantum bifactor network.
Given three quantum systems A, B, and C and a joint state ρ_{ABC}, we say that A and C are independent given B if $I(A : C|B) = 0$ which implies:

- $\rho_{ABC} = \rho_A \star^{(n)} \rho_{B|A}^{(n)} \rho_{C|B}^{(n)}$ which suggests $A \rightarrow B \rightarrow C$.
- $\rho_{ABC} = \rho_C \star^{(n)} \rho_{A|B}^{(n)} \rho_{B|C}^{(n)}$ which suggests $A \leftarrow B \leftarrow C$.
- $\rho_{ABC} = \rho_B \star^{(n)} \rho_{A|B}^{(n)} \rho_{C|B}^{(n)}$ which suggests $A \leftarrow B \rightarrow C$.

These conditions differ for different values of n and differ between each other.

$\rho_{ABC} = (\rho_A \rho_B \rho_C) \star^{(n)} (\rho_{A:B}^{(n)} \rho_{B:C}^{(n)})$ is a quantum bifactor network.
Quantum conditional independence

Given three quantum systems A, B, and C and a joint state ρ_{ABC}, we say that A and C are independent given B if $I(A : C|B) = 0$ which implies:

- $\rho_{ABC} = \rho_A \star^{(n)} \rho_{B|A} \star^{(n)} \rho_{C|B}$ which suggests $A \rightarrow B \rightarrow C$.
- $\rho_{ABC} = \rho_C \star^{(n)} \rho_{A|B} \star^{(n)} \rho_{B|C}$ which suggests $A \leftarrow B \leftarrow C$.
- $\rho_{ABC} = \rho_B \star^{(n)} \rho_{A|B} \star^{(n)} \rho_{C|B}$ which suggests $A \leftarrow B \rightarrow C$.

These conditions differ for different values of n and differ between each other.

- $\rho_{ABC} = (\rho_A \rho_B \rho_C) \star^{(n)} (\rho_{A:B}^{(n)} \rho_{B:C}^{(n)})$ is a quantum bifactor network.
Quantum conditional independence

Given three quantum systems A, B, and C and a joint state ρ_{ABC}, we say that A and C are independent given B if $I(A : C | B) = 0$ which implies:

- $\rho_{ABC} = \rho_A \star^{(n)} \rho_{B|A} \star^{(n)} \rho_{C|B}$ which suggests $A \rightarrow B \rightarrow C$.
- $\rho_{ABC} = \rho_C \star^{(n)} \rho_{A|B} \star^{(n)} \rho_{B|C}$ which suggests $A \leftarrow B \leftarrow C$.
- $\rho_{ABC} = \rho_B \star^{(n)} \rho_{A|B} \star^{(n)} \rho_{C|B}$ which suggests $A \leftarrow B \rightarrow C$.

These conditions differ for different values of n and differ between each other.

- $\rho_{ABC} = (\rho_A \rho_B \rho_C) \star^{(n)} (\rho_{A:B}^{(n)} \rho_{B:C}^{(n)})$ is a quantum bifactor network.
Quantum conditional independence

Given three quantum systems A, B, and C and a joint state ρ_{ABC}, we say that A and C are independent given B if $I(A : C|B) = 0$ which implies:

1. $\rho_{ABC} = \rho_A \star^{(n)} \rho_{B|A} \star^{(n)} \rho_{C|B}$ which suggests $A \rightarrow B \rightarrow C$.
2. $\rho_{ABC} = \rho_C \star^{(n)} \rho_{A|B} \star^{(n)} \rho_{B|C}$ which suggests $A \leftarrow B \leftarrow C$.
3. $\rho_{ABC} = \rho_B \star^{(n)} \rho_{A|B} \star^{(n)} \rho_{C|B}$ which suggests $A \leftarrow B \rightarrow C$.

These conditions differ for different values of n and differ between each other.

$\rho_{ABC} = (\rho_A \rho_B \rho_C) \star^{(n)} (\rho_{A:B} \rho_{B:C})$ is a quantum bifactor network.
Quantum conditional independence

Given three quantum systems A, B, and C and a joint state ρ_{ABC}, we say that A and C are independent given B if $I(A : C|B) = 0$ which implies:

- $\rho_{ABC} = \rho_A \star (n) \rho_{B|A} \star (n) \rho_{C|B}$ which suggests $A \rightarrow B \rightarrow C$.
- $\rho_{ABC} = \rho_C \star (n) \rho_{A|B} \star (n) \rho_{B|C}$ which suggests $A \leftarrow B \leftarrow C$.
- $\rho_{ABC} = \rho_B \star (n) \rho_{A|B} \star (n) \rho_{C|B}$ which suggests $A \leftarrow B \rightarrow C$.

These conditions differ for different values of n and differ between each other.

- $\rho_{ABC} = (\rho_A \rho_B \rho_C) \star (n) (\rho_{A:B} \rho_{B:C})$ is a quantum bifactor network.
Theorem

For $n = \infty$, all conditions are equivalent and imply conditional independence.

Theorem

For $n = 1$, the first two conditions are equivalent and imply conditional independence.

Theorem (Quantum Hammersley-Clifford)

If (ρ_V, G) is a positive quantum Markov network, then

$$
\rho_V = \bigotimes_{C \in \mathcal{E}(G)} \sigma_C = \exp \left\{ -\beta \sum_{C \in \mathcal{E}(G)} h_C \right\}.
$$
Quantum graphical models

Quantum conditional independence

Theorem

For \(n = \infty \), all conditions are equivalent and imply conditional independence.

Theorem

For \(n = 1 \), the first two conditions are equivalent and imply conditional independence.

Theorem (Quantum Hammersley-Clifford)

If \((\rho_V, G)\) is a positive quantum Markov network, then

\[
\rho_V = \bigotimes_{C \in \mathcal{C}(G)} \sigma_C = \exp \left\{ -\beta \sum_{C \in \mathcal{C}(G)} h_C \right\}.
\]
For $n = \infty$, all conditions are equivalent and imply conditional independence.

For $n = 1$, the first two conditions are equivalent and imply conditional independence.

If (ρ_V, G) is a positive quantum Markov network, then

$$
\rho_V = \bigotimes_{C \in \mathcal{C}(G)} \sigma_C = \exp \left\{ -\beta \sum_{C \in \mathcal{C}(G)} h_C \right\}.
$$
Outline

1. Graphical models
2. Belief propagation
3. Quantum graphical models
4. Quantum belief propagation
5. Examples
 - Quantum turbo-codes
 - Many-body simulations
The algorithm

Cut and paste from previous section.
Don't forget to search for Π and replace by $\star^{(n)}$.

M. Hastings '07
The algorithm

Cut and paste from previous section.
Don't forget to search for Π and replace by $\star^{(n)}$.

M. Hastings ’07
Let $G = (V, E)$ be a graph and let

$$\rho_V = \frac{1}{Z} \left(\bigotimes_{u \in V} \mu_u \right) \star^{(n)} \left(\prod_{(u, v) \in E} \nu_{u:v} \right)$$

be a bifactor state on G.

Theorem

If G is a tree and (G, ρ_V) is a quantum Markov random field, then the beliefs b_u converge to the correct marginals $\rho_u = \text{Tr}_{V \setminus u} \{ \rho_V \}$ in a time proportional to $\text{depth}(G)$.

Theorem

If G is a tree and $n = 1$, then the beliefs b_u converge to the correct marginals $\rho_u = \text{Tr}_{V \setminus u} \{ \rho_V \}$ in a time proportional to $\text{depth}(G)$.
Let $G = (V, E)$ be a graph and let

$$\rho_V = \frac{1}{Z} \left(\bigotimes_{u \in V} \mu_u \right) \star^{(n)} \left(\prod_{(u, v) \in E} \nu_{u:v} \right)$$

be a bifactor state on G.

Theorem

If G is a tree and (G, ρ_V) is a quantum Markov random field, then the beliefs b_u converge to the correct marginals $\rho_u = \text{Tr}_{V-u}\{\rho_V\}$ in a time proportional to $\text{depth}(G)$.

Theorem

If G is a tree and $n = 1$, then the beliefs b_u converge to the correct marginals $\rho_u = \text{Tr}_{V-u}\{\rho_V\}$ in a time proportional to $\text{depth}(G)$.
Let $G = (V, E)$ be a graph and let

$$\rho_V = \frac{1}{Z} \left(\bigotimes_{u \in V} \mu_u \right) \ast^{(n)} \left(\prod_{(u,v) \in E} \nu_{u,v} \right)$$

be a bifactor state on G.

Theorem

If G is a tree and (G, ρ_V) is a quantum Markov random field, then the beliefs b_u converge to the correct marginals $\rho_u = \text{Tr}_{V-u} \{ \rho_V \}$ in a time proportional to $\text{depth}(G)$.

Theorem

If G is a tree and $n = 1$, then the beliefs b_u converge to the correct marginals $\rho_u = \text{Tr}_{V-u} \{ \rho_V \}$ in a time proportional to $\text{depth}(G)$.
Outline

1. Graphical models
2. Belief propagation
3. Quantum graphical models
4. Quantum belief propagation
5. Examples
 - Quantum turbo-codes
 - Many-body simulations
Outline

1. Graphical models
2. Belief propagation
3. Quantum graphical models
4. Quantum belief propagation
5. Examples
 - Quantum turbo-codes
 - Many-body simulations
Turbo code performances on depolarization channel

- Rate is fixed at $\frac{1}{9}$.
- Error probability decreases as number of encoded qubits increases.
- Error-free "phase transition" at 0.1.
- With finite size, 10^{-4} threshold around $\epsilon = 0.08$.

Best performance to date at this rate.

Poulin, Tillich, and Ollivier’07.
Turbo code performances on depolarization channel

- Rate is fixed at $\frac{1}{9}$.
- Error probability decreases as number of encoded qubits increases.
- Error-free "phase transition" at 0.1.
- With finite size, 10^{-4} threshold around $\epsilon = 0.08$.

Best performance to date at this rate.

Poulin, Tillich, and Ollivier’07.
Rate is fixed at $\frac{1}{9}$.

Error probability decreases as the number of encoded qubits increases.

Error-free "phase transition" at 0.1.

With finite size, 10^{-4} threshold around $\epsilon = 0.08$.

Best performance to date at this rate.

Poulin, Tillich, and Ollivier’07.
Quantum turbo-codes

Turbo code performances on depolarization channel

- Rate is fixed at $\frac{1}{9}$.
- Error probability decreases as number of encoded qubits increases.
- Error-free "phase transition" at 0.1.
- With finite size, 10^{-4} threshold around $\epsilon = 0.08$.

Best performance to date at this rate.

Poulin, Tillich, and Ollivier'07.
Rate is fixed at $\frac{1}{9}$.

Error probability decreases as number of encoded qubits increases.

Error-free "phase transition" at 0.1.

With finite size, 10^{-4} threshold around $\epsilon = 0.08$.

Best performance to date at this rate.

Poulin, Tillich, and Ollivier’07.
Fig. 10. Summary of performances of several quantum codes on the 4-ary symmetric channel (depolarizing channel), treated by all decoding algorithms shown in this figure as if the channel were a pair of independent binary-symmetric channels. Each point shows the marginal noise level at which the block error probability is.

In the case of dual-containing codes, this is the noise level at which each of the two identical constituent codes (see (19)) has an error probability of.

As a aid to the eye, lines have been added between the four unicycle codes U; between a sequence of bicycle codes B all of block length with different rates; and between a sequence of of BCH codes with increasing block length. The curve labeled S2 is the Shannon limit if the correlations between errors and errors are neglected, (45).

Points " are codes invented elsewhere. All other point styles denote codes presented for the first time in this paper.

Fig. 11. Summary of performances of several codes on the 4-ary symmetric channel (depolarizing channel). The additional points at the right and bottom are as follows. 3786(B,4SC): a code of construction B (the same code as its neighbor in the figure) decoded with a decoder that exploits the known correlations between errors and errors.

3786(B,D): the same code as the code to its left in the figure, simulated with a channel where the qubits have a diversity of known reliabilities; errors and errors occur independently with probabilities determined from a Gaussian distribution; the channel in this case is not the 4-ary symmetric channel, but we plot the performance at the equivalent value of.

: an algebraically constructed quantum code (not a sparse-graph code) from [10].
1. Graphical models
2. Belief propagation
3. Quantum graphical models
4. Quantum belief propagation
5. Examples
 - Quantum turbo-codes
 - Many-body simulations
One dimensional classical system

Consider the 1d classical system with hamiltonian $H = \sum_i h_i + \sum_{\langle ij \rangle} J_{ij}$.

Its Gibbs distribution is $(\mu(i) = e^{-\beta h_i}$ and $\nu(i, j) = e^{-\beta J_{ij}}$)

$$\rho(i_1, i_2, \ldots) = \frac{1}{Z} e^{-\beta H(i_1, i_2, \ldots)}$$

$$= \frac{1}{Z} \mu(i_1) \nu(i_1, i_2) \mu(i_2) \nu(i_2, i_3) \mu(i_3) \ldots$$

So the partition function can be evaluated step by step:

$$m_{1\rightarrow 2}(i_2) = \sum_{i_1} \mu(i_1) \nu(i_1, i_2)$$

$$m_{2\rightarrow 3}(i_3) = \sum_{i_2} m_{i_1\rightarrow i_2}(i_2) \mu(i_2) \nu(i_2, i_3)$$

$$m_{3\rightarrow 4}(i_4) = \sum_{i_3} m_{i_2\rightarrow i_3}(i_3) \mu(i_3) \nu(i_3, i_4)$$

$$\vdots$$

$$Z = \sum_{i_N} m_{i_{N-1}\rightarrow i_N} \mu(i_N)$$
Consider the 1d classical system with Hamiltonian $H = \sum_i h_i + \sum_{\langle ij \rangle} J_{ij}$. Its Gibbs distribution is $(\mu(i) = e^{-\beta h_i}$ and $\nu(i, j) = e^{-\beta J_{ij}}$)

$$\rho(i_1, i_2, \ldots) = \frac{1}{Z} e^{-\beta H(i_1, i_2, \ldots)}$$

$$= \frac{1}{Z} \mu(i_1) \nu(i_1, i_2) \mu(i_2) \nu(i_2, i_3) \mu(i_3) \ldots$$

So the partition function can be evaluated step by step:

$$m_{1\rightarrow 2}(i_2) = \sum_{i_1} \mu(i_1) \nu(i_1, i_2)$$

$$m_{2\rightarrow 3}(i_3) = \sum_{i_2} m_{1\rightarrow 2}(i_2) \mu(i_2) \nu(i_2, i_3)$$

$$m_{3\rightarrow 4}(i_4) = \sum_{i_3} m_{2\rightarrow 3}(i_3) \mu(i_3) \nu(i_3, i_4)$$

$$\vdots$$

$$Z = \sum_{i_N} m_{i_{N-1}\rightarrow i_N} \mu(i_N)$$
Consider the 1d classical system with hamiltonian \(H = \sum_i h_i + \sum_{\langle ij \rangle} J_{ij} \).

Its Gibbs distribution is \((\mu(i) = e^{-\beta h_i} \text{ and } \nu(i, j) = e^{-\beta J_{ij}}) \)

\[
\rho(i_1, i_2, \ldots) = \frac{1}{Z} e^{-\beta H(i_1, i_2, \ldots)} = \frac{1}{Z} \mu(i_1) \nu(i_1, i_2) \mu(i_2) \nu(i_2, i_3) \mu(i_3) \ldots
\]

So the partition function can be evaluated step by step:

\[
m_{1\rightarrow 2}(i_2) = \sum_{i_1} \mu(i_1) \nu(i_1, i_2)
\]

\[
m_{2\rightarrow 3}(i_3) = \sum_{i_2} m_{1\rightarrow 2}(i_2) \mu(i_2) \nu(i_2, i_3)
\]

\[
m_{3\rightarrow 4}(i_4) = \sum_{i_3} m_{2\rightarrow 3}(i_3) \mu(i_3) \nu(i_3, i_4)
\]

\[
\vdots
\]

\[
Z = \sum_{i_N} m_{i_{N-1}\rightarrow i_N} \mu(i_N)
\]
One dimensional classical system

Consider the 1d classical system with Hamiltonian \(H = \sum_i h_i + \sum_{\langle ij \rangle} J_{ij} \).

Its Gibbs distribution is (\(\mu(i) = e^{-\beta h_i} \) and \(\nu(i, j) = e^{-\beta J_{ij}} \))

\[
\rho(i_1, i_2, \ldots) = \frac{1}{Z} e^{-\beta H(i_1, i_2, \ldots)} = \frac{1}{Z} \mu(i_1) \nu(i_1, i_2) \mu(i_2) \nu(i_2, i_3) \mu(i_3) \ldots
\]

So the partition function can be evaluated step by step:

\[
m_{1\to 2}(i_2) = \sum_{i_1} \mu(i_1) \nu(i_1, i_2)
\]

\[
m_{2\to 3}(i_3) = \sum_{i_2} m_{1\to 2}(i_2) \mu(i_2) \nu(i_2, i_3)
\]

\[
m_{3\to 4}(i_4) = \sum_{i_3} m_{2\to 3}(i_3) \mu(i_3) \nu(i_3, i_4)
\]

\[
\vdots
\]

\[
Z = \sum_{i_N} m_{i_{N-1}\to i_N} \mu(i_N)
\]
One dimensional classical system

Consider the 1d classical system with hamiltonian $H = \sum_i h_i + \sum_{\langle ij \rangle} J_{ij}$. Its Gibbs distribution is $(\mu(i) = e^{-\beta h_i}$ and $\nu(i, j) = e^{-\beta J_{ij}}$)

$$\rho(i_1, i_2, \ldots) = \frac{1}{Z} e^{-\beta H(i_1, i_2, \ldots)}$$

$$= \frac{1}{Z} \mu(i_1) \nu(i_1, i_2) \mu(i_2) \nu(i_2, i_3) \mu(i_3) \ldots$$

So the partition function can be evaluated step by step:

$$m_{1\rightarrow 2}(i_2) = \sum_{i_1} \mu(i_1) \nu(i_1, i_2)$$

$$m_{2\rightarrow 3}(i_3) = \sum_{i_2} m_{i_1\rightarrow 2}(i_2) \mu(i_2) \nu(i_2, i_3)$$

$$m_{3\rightarrow 4}(i_4) = \sum_{i_3} m_{i_2\rightarrow 3}(i_3) \mu(i_3) \nu(i_3, i_4)$$

$$\vdots$$

$$Z = \sum_{i_N} m_{i_{N-1}\rightarrow N}(i_N) \mu(i_N)$$
One dimensional classical system

Consider the 1d classical system with Hamiltonian $H = \sum_i h_i + \sum_{\langle ij \rangle} J_{ij}$. Its Gibbs distribution is $(\mu(i) = e^{-\beta h_i}$ and $\nu(i, j) = e^{-\beta J_{ij}})$

$$\rho(i_1, i_2, \ldots) = \frac{1}{Z} e^{-\beta H(i_1, i_2, \ldots)}$$

$$= \frac{1}{Z} \mu(i_1) \nu(i_1, i_2) \mu(i_2) \nu(i_2, i_3) \mu(i_3) \ldots$$

So the partition function can be evaluated step by step:

$$m_{1\rightarrow 2}(i_2) = \sum_{i_1} \mu(i_1) \nu(i_1, i_2)$$

$$m_{2\rightarrow 3}(i_3) = \sum_{i_2} m_{1\rightarrow 2}(i_2) \mu(i_2) \nu(i_2, i_3)$$

$$m_{3\rightarrow 4}(i_4) = \sum_{i_3} m_{2\rightarrow 3}(i_3) \mu(i_3) \nu(i_3, i_4)$$

$$\vdots$$

$$Z = \sum_{i_N} m_{i_{N-1}\rightarrow i_N} \mu(i_N)$$
Consider the 1d classical system with Hamiltonian \(H = \sum_i h_i + \sum_{\langle ij \rangle} J_{ij} \). Its Gibbs distribution is \((\mu(i) = e^{-\beta h_i} \text{ and } \nu(i, j) = e^{-\beta J_{ij}}) \)

\[
\rho(i_1, i_2, \ldots) = \frac{1}{Z} e^{-\beta H(i_1, i_2, \ldots)} = \frac{1}{Z} \mu(i_1) \nu(i_1, i_2) \mu(i_2) \nu(i_2, i_3) \mu(i_3) \ldots
\]

So the partition function can be evaluated step by step:

\[
m_{1\rightarrow 2}(i_2) = \sum_{i_1} \mu(i_1) \nu(i_1, i_2)
\]

\[
m_{2\rightarrow 3}(i_3) = \sum_{i_2} m_{i_1\rightarrow i_2}(i_2) \mu(i_2) \nu(i_2, i_3)
\]

\[
m_{3\rightarrow 4}(i_4) = \sum_{i_3} m_{i_2\rightarrow i_3}(i_3) \mu(i_3) \nu(i_3, i_4)
\]

\[
\vdots
\]

\[
Z = \sum_{i_N} m_{i_{N-1}\rightarrow i_N} \mu(i_N)
\]
Consider the 1d quantum system with Hamiltonian $H = \sum_i h_i + \sum_{\langle ij \rangle} J_{ij}$.

Its Gibbs distribution is $(\mu_i = e^{-\beta h_i}$ and $\nu_{i:j} = e^{-\beta J_{ij}})$

$$\rho_V = \frac{1}{Z} e^{-\beta H} = \frac{1}{Z} \mu_i \otimes \nu_{i_1:i_2} \otimes \mu_{i_2} \otimes \nu_{i_2:i_3} \otimes \mu_{i_3} \ldots$$

Bottleneck for computing Z:

$$\text{Tr}_A\{\mu_A \otimes \nu_{A:B} \otimes \mu_B \otimes \nu_{B:C} \otimes \mu_C\} \neq \text{Tr}_A\{\mu_A \otimes \nu_{A:B}\} \otimes \mu_B \otimes \nu_{B:C} \otimes \mu_C$$

But it is equal when $I(A : C|B) = 0$.
Consider the 1d **quantum** system with hamiltonian \(H = \sum_i h_i + \sum_{\langle ij \rangle} J_{ij} \).

Its Gibbs distribution is (\(\mu_i = e^{-\beta h_i} \) and \(\nu_{i:j} = e^{-\beta J_{ij}} \))

\[
\rho_V = \frac{1}{Z} e^{-\beta H} = \frac{1}{Z} \mu_{i_1} \otimes \nu_{i_1:i_2} \otimes \mu_{i_2} \otimes \nu_{i_2:i_3} \otimes \mu_{i_3} \ldots
\]

Bottleneck for computing \(Z \):

\[
\text{Tr}_A\{\mu_A \otimes \nu_{A:B} \otimes \mu_B \otimes \nu_{B:C} \otimes \mu_C\} \neq \text{Tr}_A\{\mu_A \otimes \nu_{A:B}\} \otimes \mu_B \otimes \nu_{B:C} \otimes \mu_C
\]

But it is equal when \(I(A : C|B) = 0 \).
Consider the 1d \textit{quantum} system with hamiltonian \(H = \sum_i h_i + \sum_{\langle ij \rangle} J_{ij} \). Its Gibbs distribution is \((\mu_i = e^{-\beta h_i} \text{ and } \nu_{i:j} = e^{-\beta J_{ij}})\)

\[
\rho_V = \frac{1}{Z} e^{-\beta H} = \frac{1}{Z} \mu_{i_1} \otimes \nu_{i_1:i_2} \otimes \mu_{i_2} \otimes \nu_{i_2:i_3} \otimes \mu_{i_3} \ldots
\]

Bottleneck for computing \(Z \):

\[
\text{Tr}_A\{\mu_A \otimes \nu_{A:B} \otimes \mu_B \otimes \nu_{B:C} \otimes \mu_C\} \neq \text{Tr}_A\{\mu_A \otimes \nu_{A:B}\} \otimes \mu_B \otimes \nu_{B:C} \otimes \mu_C
\]

But it is equal when \(I(A : C|B) = 0 \).
Consider the 1d \textit{quantum} system with hamiltonian $H = \sum_i h_i + \sum_{\langle ij \rangle} J_{ij}$. Its Gibbs distribution is $(\mu_i = e^{-\beta h_i}$ and $\nu_{i:j} = e^{-\beta J_{ij}})$

$$\rho_V = \frac{1}{Z} e^{-\beta H} = \frac{1}{Z} \mu_{i_1} \otimes \nu_{i_1:i_2} \otimes \mu_{i_2} \otimes \nu_{i_2:i_3} \otimes \mu_{i_3} \ldots$$

Bottleneck for computing Z:

$$\text{Tr}_A\{\mu_A \otimes \nu_{A:B} \otimes \mu_B \otimes \nu_{B:C} \otimes \mu_C\} \neq \text{Tr}_A\{\mu_A \otimes \nu_{A:B}\} \otimes \mu_B \otimes \nu_{B:C} \otimes \mu_C$$

But it is equal when $I(A : C|B) = 0$.
Effective thermal hamiltonian

\[H = \sum_{i=-\infty}^{\infty} h_i + J_{i,i+1} \quad \text{and} \quad \rho = \frac{1}{Z} \exp\{-\beta H\} \]

Effective Thermal Hamiltonian = \(\sum_{i=1}^{\infty} h_i + J_{i,i+1} + V_1 + V_2 + V_3 + V_4 \ldots \)

Effective Thermal Hamiltonian = \(\sum_{i=1}^{\infty} h_i + J_{i,i+1} + V_1 + V_2 + V_3 + V_4 \ldots \)

\[\rho = \frac{1}{Z} \exp\{-\beta H\} \]
Effective thermal Hamiltonian

\[\rho' = \text{Tr}_{-\infty \ldots -1} \{ \rho \} \]

\[\rho = \frac{1}{Z} \exp \{-\beta H\} \]

Effective Thermal Hamiltonian = \[\sum_{i=1}^{\infty} h_i + J_{i,i+1} + V_1 + V_2 + V_3 + V_4 \ldots \]
Effective thermal hamiltonian

\[\rho' = \text{Tr}_{-\infty \ldots -1} \{ \rho \} \]

\[\rho' = \frac{1}{Z'} \exp\{ -\beta H_{\text{eff}} \} \]

Effective Thermal Hamiltonian = \(\sum_{i=1}^{\infty} h_i + J_{i,i+1} + V_1 + V_2 + V_3 + V_4 \ldots \)
Effective thermal hamiltonian

$$\rho' = \text{Tr}_{-\infty \ldots -1} \{\rho\} \quad \rho' = \frac{1}{Z'} \exp\{ -\beta H_{\text{eff}} \}$$

Effective Thermal Hamiltonian = $\sum_{i=1}^{\infty} h_i + J_{i,i+1} + V_1 + V_2 + V_3 + V_4 \ldots$
Effective thermal hamiltonian

\[\rho' = \text{Tr}_{-\infty \ldots -1} \{ \rho \} \quad \rho' = \frac{1}{Z'} \exp\{-\beta H_{\text{eff}}\} \]

Effective Thermal Hamiltonian = \(\sum_{i=1}^{\infty} h_i + J_{i,i+1} + V_1 + V_2 + V_3 + V_4 \ldots \)
Effective thermal hamiltonian

\[\rho' = \text{Tr}_{-\infty \ldots -1} \{ \rho \} \]

\[\rho' = \frac{1}{Z'} \exp \{-\beta H_{\text{eff}}\} \]

Effective Thermal Hamiltonian = \[\sum_{i=1}^{\infty} h_i + J_{i,i+1} + V_1 + V_2 + V_3 + V_4 \ldots \]
Effective thermal hamiltonian

\[\rho' = \text{Tr}_{-\infty \ldots -1}\{\rho\} \quad \rho' = \frac{1}{Z'} \exp\{-\beta H_{\text{eff}}\} \]

\[\ldots (-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, \ldots) \]

Effective Thermal Hamiltonian = \[\sum_{i=1}^{\infty} h_i + J_{i,i+1} + V_1 + V_2 + V_3 + V_4 \ldots \]
Effective thermal Hamiltonian = \(\sum_{i=1}^{\infty} h_i + J_{i,i+1} + V_1 + V_2 + V_3 + V_4 \ldots \)
Effective thermal Hamiltonian

\[\rho' = \text{Tr}_{-\infty \ldots -1} \{ \rho \} \quad \rho' = \frac{1}{Z'} \exp\{-\beta H_{\text{eff}}\} \]

Effective Thermal Hamiltonian = \(\sum_{i=1}^{\infty} h_i + J_{i,i+1} + V_1 + V_2 + V_3 + V_4 \ldots \)
One dimensional quantum system

\[
\begin{align*}
\sigma_{1-4} &= e^{-\beta(h_1 + h_2 + h_3 + h_4 + J_{12} + J_{23} + J_{34})} \\
\sigma'_{2-4} &= \text{Tr}_1\{\sigma_{1-4}\}, \quad h'_{2-4} = -\frac{1}{\beta} \log \sigma'_{2-4} \\
\sigma_{2-5} &= e^{-\beta(h'_{2-4} + h_5 + J_{45})} \\
\sigma'_{3-5} &= \text{Tr}_2\{\sigma_{2-5}\}, \quad h'_{3-5} = -\frac{1}{\beta} \log \sigma'_{3-5} \\
\sigma_{3-6} &= e^{-\beta(h'_{3-5} + h_6 + J_{56})} \\
&\vdots \\
Z &= \text{Tr}\{\sigma_{N-3,N-2,N-1,N}\}
\end{align*}
\]
One dimensional quantum system

\[\sigma_{1-4} = e^{-\beta(h_1 + h_2 + h_3 + h_4 + J_{12} + J_{23} + J_{34})} \]

\[\sigma'_{2-4} = Tr_1\{\sigma_{1-4}\} \quad h'_{2-4} = -\frac{1}{\beta} \log \sigma'_{2-4} \]

\[\sigma_{2-5} = e^{-\beta(h'_{2-4} + h_5 + J_{45})} \]

\[\sigma'_{3-5} = Tr_2\{\sigma_{2-5}\} \quad h'_{3-5} = -\frac{1}{\beta} \log \sigma'_{3-5} \]

\[\sigma_{3-6} = e^{-\beta(h'_{3-5} + h_6 + J_{56})} \]

\[\vdots \]

\[Z = Tr\{\sigma_{N-3,N-2,N-1,N}\} \]
One dimensional quantum system

\[h'_{2-4} \]

\[\sigma_{1-4} = e^{-\beta(h_1 + h_2 + h_3 + h_4 + J_{12} + J_{23} + J_{34})} \]

\[\sigma'_{2-4} = Tr_1 \{ \sigma_{1-4} \} \quad h'_{2-4} = -\frac{1}{\beta} \log \sigma'_{2-4} \]

\[\sigma_{2-5} = e^{-\beta(h'_{2-4} + h_5 + J_{45})} \]

\[\sigma'_{3-5} = Tr_2 \{ \sigma_{2-5} \} \quad h'_{3-5} = -\frac{1}{\beta} \log \sigma'_{3-5} \]

\[\sigma_{3-6} = e^{-\beta(h'_{3-5} + h_6 + J_{56})} \]

\[\vdots \]

\[Z = Tr \{ \sigma_{N-3,N-2,N-1,N} \} \]
One dimensional quantum system

\[
\sigma_{1-4} = e^{-\beta(h_1 + h_2 + h_3 + h_4 + J_{12} + J_{23} + J_{34})}
\]

\[
\sigma'_{2-4} = \text{Tr}_1\{\sigma_{1-4}\} \quad h'_{2-4} = -\frac{1}{\beta} \log \sigma'_{2-4}
\]

\[
\sigma_{2-5} = e^{-\beta(h'_{2-4} + h_5 + J_{45})}
\]

\[
\sigma'_{3-5} = \text{Tr}_2\{\sigma_{2-5}\} \quad h'_{3-5} = -\frac{1}{\beta} \log \sigma'_{3-5}
\]

\[
\sigma_{3-6} = e^{-\beta(h'_{3-5} + h_6 + J_{56})}
\]

\[
\vdots
\]

\[
Z = \text{Tr}\{\sigma_{N-3,N-2,N-1,N}\}
\]
One dimensional quantum system

\[\sigma_{1-4} = e^{-\beta(h_{1} + h_{2} + h_{3} + h_{4} + J_{12} + J_{23} + J_{34})} \]

\[\sigma'_{2-4} = Tr_{1}\{\sigma_{1-4}\} \quad h'_{2-4} = -\frac{1}{\beta} \log \sigma'_{2-4} \]

\[\sigma_{2-5} = e^{-\beta(h'_{2-4} + h_{5} + J_{45})} \]

\[\sigma'_{3-5} = Tr_{2}\{\sigma_{2-5}\} \quad h'_{3-5} = -\frac{1}{\beta} \log \sigma'_{3-5} \]

\[\sigma_{3-6} = e^{-\beta(h'_{3-5} + h_{6} + J_{56})} \]

\[\vdots \]

\[Z = Tr\{\sigma_{N-3,N-2,N-1,N}\} \]
One dimensional quantum system

\[\sigma_{3-6} \]

\[\sigma_{1-4} = e^{-\beta(h_1+h_2+h_3+h_4+J_{12}+J_{23}+J_{34})} \]

\[\sigma'_{2-4} = \text{Tr}_1\{\sigma_{1-4}\} \quad h'_{2-4} = -\frac{1}{\beta} \log \sigma'_{2-4} \]

\[\sigma_{2-5} = e^{-\beta(h'_2+h_5+J_{45})} \]

\[\sigma'_{3-5} = \text{Tr}_2\{\sigma_{2-5}\} \quad h'_{3-5} = -\frac{1}{\beta} \log \sigma'_{3-5} \]

\[\sigma_{3-6} = e^{-\beta(h'_3+h_6+J_{56})} \]

\[\vdots \]

\[Z = \text{Tr}\{\sigma_{N-3,N-2,N-1,N}\} \]
One dimensional quantum system

\[\sigma_{N-3,N-2,N-1,N} \]

\[
\sigma_{1-4} = e^{-\beta(h_1 + h_2 + h_3 + h_4 + J_{12} + J_{23} + J_{34})}
\]

\[
\sigma'_{2-4} = \text{Tr}_1 \{ \sigma_{1-4} \} \quad h'_{2-4} = -\frac{1}{\beta} \log \sigma'_{2-4}
\]

\[
\sigma_{2-5} = e^{-\beta(h'_{2-4} + h_5 + J_{45})}
\]

\[
\sigma'_{3-5} = \text{Tr}_2 \{ \sigma_{2-5} \} \quad h'_{3-5} = -\frac{1}{\beta} \log \sigma'_{3-5}
\]

\[
\sigma_{3-6} = e^{-\beta(h'_{3-5} + h_6 + J_{56})}
\]

\[
Z = \text{Tr}\{ \sigma_{N-3,N-2,N-1,N} \}
\]
Examples
Many-body simulations

Critical 1d Ising model

- Replica: Trotter decomposition $N_\tau = 10$ (bifactor $\star^{(10)}$).
- TEBD: Time-evolving block decimation (DMRG $\chi = 150$).
- Sliding window $\ell = 6$ (bifactor \odot).

Bilgin and Poulin ’07.
1D anti-ferromagnetic Heisenberg model

- **Bethe Ansatz**: exact (A. Klümper and D. C. Johnston, PRL'00).
- **Sliding window** $\ell = 9$ (bifactor ⋄).
Laumann, Scardicchio, and Sondhi ’07, Bilgin and Poulin.
Quantum Monte Carlo: M.S. Makivić and H.-Q. Ding PRB’91.
10th-order J/T expansion.
Quantum Belief propagation, window size 7.
Belief propagation operating on graphical models is a powerful, highly parallelizable, heuristic for all sorts of inference problems. Many of these properties carry over to the quantum realm:

- Half Hammersley-Clifford Theorem (Markov \Rightarrow Gibbs).

- Good heuristic for iterative decoding of sparse and quantum turbo codes.
- Good heuristic for many-body systems on graphs with no small loops.

See poster by Ersen Bilgin for more details.
Belief propagation operating on graphical models is a powerful, highly parallelizable, heuristic for all sorts of inference problems. Many of these properties carry over to the quantum realm:

- Half Hammersley-Clifford Theorem (Markov \Rightarrow Gibbs).

- Good heuristic for iterative decoding of sparse and quantum turbo codes.
- Good heuristic for many-body systems on graphs with no small loops.

See poster by Ersen Bilgin for more details.
Belief propagation operating on graphical models is a powerful, highly parallelizable, heuristic for all sorts of inference problems. Many of these properties carry over to the quantum realm:

- Half Hammersley-Clifford Theorem (Markov \Rightarrow Gibbs).

- Good heuristic for iterative decoding of sparse and quantum turbo codes.

- Good heuristic for many-body systems on graphs with no small loops.

See poster by Ersen Bilgin for more details
Belief propagation operating on graphical models is a powerful, highly parallelizable, heuristic for all sorts of inference problems. Many of these properties carry over to the quantum realm:

- Half Hammersley-Clifford Theorem (Markov \Rightarrow Gibbs).

Good heuristic for iterative decoding of sparse and quantum turbo codes.

Good heuristic for many-body systems on graphs with no small loops.

See poster by Ersen Bilgin for more details.
Belief propagation operating on graphical models is a powerful, highly parallelizable, heuristic for all sorts of inference problems. Many of these properties carry over to the quantum realm:

- Half Hammersley-Clifford Theorem (Markov \Rightarrow Gibbs).
- Good heuristic for iterative decoding of sparse and quantum turbo codes.
- Good heuristic for many-body systems on graphs with no small loops.

See poster by Ersen Bilgin for more details.
Belief propagation operating on graphical models is a powerful, highly parallelizable, heuristic for all sorts of inference problems.

Many of these properties carry over to the quantum realm:

- Half Hammersley-Clifford Theorem (Markov \Rightarrow Gibbs).

Good heuristic for iterative decoding of sparse and quantum turbo codes.

Good heuristic for many-body systems on graphs with no small loops.

See poster by Ersen Bilgin for more details.
Belief propagation operating on graphical models is a powerful, highly parallelizable, heuristic for all sorts of inference problems.

Many of these properties carry over to the quantum realm:

- Half Hammersley-Clifford Theorem (Markov ⇒ Gibbs).

Good heuristic for iterative decoding of sparse and quantum turbo codes.

Good heuristic for many-body systems on graphs with no small loops.

See poster by Ersen Bilgin for more details