
On the Chernoff distance for asymptotic LOCC
discrimination of bipartite quantum states

William Matthews and Andreas Winter

University of Bristol

CQIT 2008 Santa Fe
March 28th



Outline

I Background
I Classical Chernoff Distance
I Quantum Chernoff Distance (Global Measurements)

I State Discrimination and Chernoff Distances on Bipartite
Systems

I Data Hiding States
I Single Copy
I Dimension Dependence of Error
I Shared Entanglement

I LOCC Chernoff Distances



Classical Chernoff Distance

I Given n i.i.d. samples drawn from one of two probability
distributions over an alphabet A: p(x) and q(x) (x ∈ A).
Equally likely the distribution p or q is used.

I Guess which distribution has been used based on the n
samples.

I Probability of error is
Perr(p, q;n) = 1

2P (guess q|n samples from p) +
1
2P (guess p|n samples from q)

I Guessing according to maximum likelihood rule minimizes
this error probability.



Classical Chernoff Distance

I Large n asymptotic behaviour derived by Chernoff (1952)1.
I Perr (p, q;n) ∼ 2−ξ(p,q)n.

I Where ξ(p, q) = lim
n→∞

(
− 1
n

logPerr(p, q;n)
)

, is the

(classical) Chernoff distance and has the following simple
form in terms of the probability distributions:

ξ (p, q) = − log

(
min

0≤s≤1

∑
x∈A

p(x)sq(x)1−s

)

1The Annals of Mathematical Statistics, Vol. 23, No. 4, pp. 493-507



Quantum Chernoff Distance

I Source produces copies of state ρ0 or state ρ1. What is best
asymptotic behaviour of error?
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I A decision procedure (for given n) can be written as a two
element POVM, {M, 11−M}; If the outcome corresponding
to M occurs guess ρ1, otherwise guess ρ0.

I In terms of M :
Perr(ρ⊗n

0 , ρ⊗n
1 ;M) = 1

2

(
Tr
(
Mρ⊗n

0

)
+ Tr

(
(11−M) ρ⊗n

1

))
.

I Well known that the optimal POVM is the
Holevo-Helstrom measurement2.

2C.W. Helstrom, Quantum Detection and Estimation Theory, Academic
Press, New York (1976)
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Quantum Chernoff Distance

I Perr(ρ⊗n
0 , ρ⊗n

1 ) = 1
2

(
1− 1

2 ||ρ
⊗n
1 − ρ⊗n

0 ||1
)
.

I What is the asymptotic dependence on n?
I Answer was only recently discovered. 4

I Perr

(
ρ⊗n
0 , ρ⊗n

1

)
∼ 2−ξ(ρ0,ρ1)n.

I Where the Quantum Chernoff distance is:

ξ (ρ0, ρ1) = − log
(

min
0≤s≤1

Tr (ρs
0ρ

1−s
1 )

)
.

I Remarkably straightforward generalization of the classical
expression.

I Motivates the question: What happens when the states to
be distinguished are distributed between multiple parties?

I I will only talk about the bipartite case here.

4“Asymptotic Error Rates in Quantum Hypothesis Testing”, Audenaert
et al., arXiv:0708.4282



Classes of Operations on Bipartite Systems

I LOCC: Local Operations and Classical Communication.
I Separable Operations (SEP):

L ∈ SEP ⇐⇒ L(ρ) =
∑

i

Ai ⊗BiρA
†
i ⊗B†i .

I PPT Operations (PPT) 5: L ∈ PPT ⇐⇒ Γ ◦ L ◦ Γ is
completely positive. Where Γ = 11⊗ T is the (linear)
partial transpose map.

PPT

SEP

LOCC

ALL

LOCC ⊂ SEP ⊂ PPT ⊂ ALL(CPTP).

5E. M. Rains, “A semidefinite program for distillable entanglement”,
IEEE Trans. Inf. Theory, 47(7):2921-2933 (2001).



Measurements on Bipartite Systems

I Which measurements can be performed with operations in
one of these classes?

I LOCC - hard to characterise.
I A POVM (Mi) can be implemented in SEP iff
Mi =

∑
iXi ⊗ Yi.

I A POVM (Mi) can be implemented in PPT iff MΓ
i ≥ 0.



State Discrimination and Chernoff Distances for
Bipartite Systems

I PX
err (ρ0, ρ1) := min

(M,11−M)∈X

1
2

(Tr (Mρ0) + Tr ((11−M) ρ1)) .

I ξX (ρ0, ρ1) := lim
n→∞

(
− 1
n

logPX
err(ρ

⊗n
0 , ρ⊗n

1 )
)
.

I Containment of classes implies ordering

PLOCC
err (ρ0, ρ1) ≥ P SEP

err (ρ0, ρ1) ≥ PPPT
err (ρ0, ρ1) ≥ PALL

err (ρ0, ρ1) .
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State Discrimination and Chernoff Distances for
Bipartite Systems

ξLOCC (ρ0, ρ1) ≤ ξSEP (ρ0, ρ1) ≤ ξPPT (ρ0, ρ1) ≤ ξALL (ρ0, ρ1)

Define ξSC (ρ0, ρ1) to be the classical Chernoff distance between
the statistics generated by the optimal single copy LOCC
measurement:

ξSC (ρ0, ρ1) = − log min
0≤s≤1

(Tr (M∗ρ0)1−s Tr (M∗ρ1)s

+Tr ((11−M∗)ρ0)1−s Tr ((11−M∗)ρ1)s)

Clearly we have the lower bound:

ξSC (ρ0, ρ1) ≤ ξLOCC (ρ0, ρ1) .



State Discrimination and Chernoff Distances for
Bipartite Systems

I ξLOCC not necessarily +∞ for orthogonal states.
I ξALL(ρ0, ρ1) = ξALL(ρ0 ⊗ τ, ρ1 ⊗ τ).

Not always true in the bipartite LOCC case:
E.g. Let ΦK denote a maximally entangled state of
Schmidt rank K.
It can be the case that
ξLOCC(ρ⊗ ΦK , σ ⊗ ΦK) < ξLOCC(ρ, σ), because for some n
Alice and Bob will share enough copies of Φ to teleport and
apply global measurements.
If K ≥ dimension of states then
ξLOCC(ρ⊗ΦK , σ⊗ΦK) = ξALL(ρ⊗ΦK , σ⊗ΦK) = ξALL(ρ, σ).



State Discrimination and Chernoff Distances for
Bipartite Systems

I For pure states, LOCC can do just as well as global
measurements 6. So,
ξLOCC(|ψ〉〈ψ|, |φ〉〈φ|) = ξALL(|ψ〉〈ψ|, |φ〉〈φ|).

I For mixed states, LOCC can be much worse than global
measurements, e.g. ‘Data hiding states’7.

I Calculate LOCC Chernoff distance for states which give
different behaviour from global measurements.

6Walgate et al. Phys. Rev. Lett. 8(23):4972-4975 (2000);
(quant-ph/0007098); Virmani et al. Phys. Lett. A. 288, p.62
(quant-ph/0102073)

7DiVincenzo et al. Information Theory, IEEE Transactions on, Vol.48,
Iss.3, Mar 2002 Pages 580-598 (quant-ph/0103098)



Strategy

I Finding PPPT
err (ρ0, ρ1) is a semidefinite programming

problem:

PPPT
err (ρ0, ρ1) = min Tr

1
2

((Mρ0) + Tr ((11−M) ρ1))

M ≥ 0, 11−M ≥ 0,MΓ ≥ 0, (11−M)Γ ≥ 0

I Feasible points of the dual SDP provide lower bounds on
PPPT

err (ρ1, ρ2).
I Guess dual optimal solution.
I Guess LOCC protocol which matches the lower bound.
I If we can do this then we have shown that this protocol is

optimal.



Strategy

I Generally quite hard to do this.
I Use symmetries which are: Shared by ρ1 and ρ2 and

generated by LOCC.
I In the cases we shall look at this simplifies the problem to

a linear program.



Data Hiding States

σd =
2

d(d+ 1)
Sd ∈ B(Cd ⊗ Cd)

αd =
2

d(d− 1)
Ad ∈ B(Cd ⊗ Cd)

I These are the extremal d× d Werner states.
I Invariant under bi-unitary transformations: U ⊗ U .
I A generalization of the data hiding states of DiVincenzo et

al.
I Orthogonal, and therefore perfectly distinguishable

globally, but...
I hard to distinguish using LOCC.



Data Hiding States

Let Fd denote the flip operator on Cd ⊗ Cd:
Fd|ψ〉A ⊗ |φ〉B = |φ〉A ⊗ |ψ〉B.

ΦΓ
K =

1
d
(
∑
i,j

|i〉〈j| ⊗ |i〉〈j|)Γ =
1
d

∑
i,j

|i〉〈j| ⊗ |j〉〈i| = 1
d
F.

Sd = (11 + Fd)/2,Ad = (11− Fd)/2

SΓ
d = (11 + dΦd)/2,AΓ

d = (11− dΦd)/2



Data Hiding: Single Copy Linear Program

I POVM elements can be written as linear combinations of
Sd and Ad: M = x0Sd + x1Ad.

I Noting that (x0Sd + x1Ad)
Γ =

1
2 ((11− Φd) ,Φd)

(
1 1
d+ 1 1− d

)(
x0

x1

)
, we have

PPPT
err (σd, αd) = min (1 + x0 − x1)

subject to (
0
0

)
≤
(
x0

x1

)
≤
(

1
1

)
(

0
0

)
≤ 1

2

(
1 1
d+ 1 1− d

)(
x0

x1

)
≤
(

1
1

)
.

I There is a dual feasible point where the dual objective is
1
2

(
d−1
d+1

)
, so

PPPT
err (σd, αd) ≥

1
2

(
d− 1
d+ 1

)
.



Data Hiding: Single Copy LOCC Protocol

I Alice and Bob both measure in the computational basis,
obtaining outcomes a and b from {1, ..., d}, respectively.

I If a 6= b, then they guess αd.
I If a = b, then they guess σd.
I The wrong guess is made with probability

P ∗err(σd, αd) =
1
2
P (a 6= b|σd)+

1
2
P (a = b|αd) =

1
2

(
d− 1
d+ 1

)
+0

I This achieves the lower bound for PPT, so:

PLOCC
err (σd, αd) = PPPT

err (σd, αd) =
1
2

(
d− 1
d+ 1

)
.



Data Hiding: Single Copy LOCC Bias Dimension
Dependence - Worst Case?

I By increasing d we can make the achievable bias arbitrarily
small:

BLOCC(σd, αd) = 1− 2PLOCC
err (σd, αd) =

2
d+ 1

∼ 1
d
.

I Is this the worst (best) possible dimension dependence?
I For separable measurements it is...



Generic Separable Measurement

I Barnum and Gurvits 8: Every operator in the ball of radius
one in H-S norm centred on the identity is separable.

I Take Holevo-Helstrom POVM (M, 11−M) and mix in just
enough identity with the elements to ensure that they are
in this ball.(

1
2

(
11 +

M

‖M‖2

)
,
1
2

(
11− M

‖M‖2

))
.

I Using ‖M‖2 ≤
√
D, (where D is total dimension of the

system), we find

BSEP ≥ 1
2
√
D
BALL.

8H. Barnum, L. Gurvits, “Largest separable balls around the maximally
mixed bipartite quantum state”, Phys. Rev. A 66, 062311 (2002)



Data Hiding: Single Copy + Shared Entanglement

I What if Alice and Bob share a maximally entangled state
of Schmidt rank K ≤ d?

I ΦK has U ⊗ Ū invariance.
I M = x.(Sd ⊗ΦK ,Ad ⊗ (11−ΦK),Ad ⊗ΦK ,Ad ⊗ (11−ΦK)).
I Again, we can simplify to a linear program.
I A dual feasible point can be found yielding the bound

PPPT
err (σd ⊗ ΦK , αd ⊗ ΦK) ≥ 1

2

(
d−K

d+ 1

)
.



Data Hiding: Single Copy + Shared Entanglement

I Again, this bound can be achieved by an LOCC protocol:

I Alice performs the POVM
(
ΠA

K,j/K
)

j=1,...,d
on her half of

the data hiding state, where ΠA
K,j =

K−1∑
m=0

|j ⊕m〉〈j ⊕m|,

and tells Bob the outcome j.

I Bob does the projective measurement
(
ΠB

K,j , 11−ΠB
K,j

)
on

his half of the data-hiding state.
I If the first outcome occurs, the resulting state is the

completely symmetric or anti-symmetric Werner state on a
K ×K subspace. Bob teleports his half to Alice with the
entangled state and Alice identifies it without error.

I If the second outcome occurs, they guess that they have
the anti-symmetric Werner state.



Data Hiding: Linear Program for Many Copies

I U ⊗ U invariance on each copy - SDP to LP.
I Invariance under permutations of copies - 2n variables to
n+ 1 variables.

I The dual linear program has a feasible point which gives
the bound

PPPT
err

(
σ⊗n, α⊗n

)
≥ 1

2

(
d− 1
d+ 1

)n

.



Data Hiding: Protocol for Many Copies

I The following protocol achieves the PPT bound:
I Alice and Bob take each copy separately and measure in the

computational basis, obtaining on the ith copy the
outcomes ai and bi from {1, ..., d}.

I If ai 6= bi for all i, then they guess αd.
I If ai = bi for some i, then they guess σd.

P ∗err(σd, αd;n) =
1
2
P (∀i : ai 6= bi|σ⊗n

d ) +
1
2
P (∃i : ai = bi|α⊗n

d ).

P ∗err(σd, αd;n) =
1
2

(
d− 1
d+ 1

)n

.



Data Hiding: LOCC Chernoff Distance

I Whereas PALL
(
σ⊗n

d , α⊗n
d

)
= 0

PPPT
(
σ⊗n

d , α⊗n
d

)
=P SEP

(
σ⊗n

d , α⊗n
d

)
= PLOCC

(
σ⊗n

d , α⊗n
d

)
=

1
2

(
d− 1
d+ 1

)n

.

I So, we have,

ξPPT(σd, αd) =ξSEP(σd, αd) = ξLOCC(σd, αd)

=ξSC(σd, αd) = log
d+ 1
d− 1

.

I It is notable that we do not need joint measurements to
achieve the optimal result.



LOCC Chernoff Distance for Extremal Isotropic States

I Φ⊥d := 11−Φd
d2−1

.
I U ⊗ Ū invariance.
I Copy permutation invariance.
I Again, we can use the dual SDP for PPPT

err

(
Φd,Φ⊥d

)
show

that the following protocol is optimal:
I Alice and Bob measure each copy in the computational

basis.
I If for every copy they get the same result then they guess

that they have n copies of Φd, otherwise they know that
they have Φ⊥d .



LOCC Chernoff Distance for Extremal Isotropic States

I Similar to the extremal Werner state case, all of the
non-global min. errors are equal

PLOCC
err

(
Φd,Φ⊥d

)
=P SEP

err

(
Φd,Φ⊥d

)
= PPPT

err

(
Φd,Φ⊥d

)
=

1
2

1
(d+ 1)n

.

I Again there is an optimal many-copy measurement which
can be performed one copy at a time.

ξLOCC
(
Φd,Φ⊥d

)
=ξSEP

(
Φd,Φ⊥d

)
= ξPPT

(
Φd,Φ⊥d

)
=ξSC

(
Φd,Φ⊥d

)
= log (d+ 1) .



In Summary

I Dimensional dependence of bias is optimal for separable
measurements - is it for LOCC?

I Data hiding property fails gradually in the presence of
shared entanglement.

I Optimal LOCC protocols determined for discriminating
between the extremal Werner states and between the
extremal isotropic states, when n copies are available.

I ξLOCC(σd, αd) = ξSC(σd, αd) = log d+1
d−1 .

I ξLOCC
(
Φd,Φ⊥d

)
= ξSC

(
Φd,Φ⊥d

)
= log (d+ 1) .

I Thank you.
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