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We analyze modern ad hoc networks, e.g. Wireless
Sensor Networks (WSN) consisting of identical nodes
capable of transmitting, receiving and sending of radio
signals. We assume that there is a large number of
nodes in the network. For a network operating accord-
ing to fixed operational rules, we aim to develop a theo-
retical approach which sets a comprehensive framework
and allows approximate evaluation of the network per-
formance measured in terms of the network through-
put, total consumption of energy, network delay etc.
Our approach allows direct comparison with high fi-
delity simulations, and also with existing and future
testbeds. A critical barrier to progress in the field lies
in complexity of the problems and, especially, dynam-
ical, i.e. ever changing, and stochastic nature of the
network setting.
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• Node is a mini-computer + radio sender/receiver

• Each node can generate packets to be delivered to
other node

• A generated packet is sent as a radio signal that
can be detected by neighbor nodes

• The detected signal is decoded and written to mem-
ory

• After that it is resent and erased from memory

• So, a packet delivery is a multi-hop process



• A number of neighbor nodes that can receive the
signal is larger than unity

• There is a probability of information lost due to
noises

• However, the reproduction number should be larger
than unity

• Thus the number of nodes occupied by a packet
increases

• This effects diminishes the network throughput since
the waiting time before resending a packet depends
on the node memory occupation



• Some additional rules are needed to achieve a com-
pact cloud (spot) of nodes occupied by a packet
propagating from source to destination

• Forward rule: a packet is written in the memory
only if the current node is closer to the destination
node then the last sender.

• Corridor Rule: a packet is written in the memory
only if the current node lies in the corridor connect-
ing the source and the destination.

• It implies that the geographical information about
any node is available and that the positions of the
source and the destination are contained in the mes-
sage header.
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We adopt Doi technique for the master equation level

of the network description. If at some instance t node

j of the network contains the packet one says that the

node is in the |+〉 state, while the state would be |−〉 if

the node does not have the packet. Then, any “pure”

state of the entire network will be denoted by |µ〉, where

µ stands for the set of + and − states at all the nodes

of the network. If the state |µ〉 is realized with the

probability P (µ) one says that the entire network is in

the state

|s〉 =
∑
µ
P (µ)|µ〉,

∑
µ
P (µ) = 1, (1)

where the last condition reflects that the total proba-

bility is equal to unity.



It is convenient to think about |+〉 and |−〉 as of quan-

tum spin states of a node, i.e. they can be considered

as bra vectors transformed by the Pauli matrixes

σ+ =

(
0 1
0 0

)
, σ− =

(
0 0
1 0

)
, σz =

(
1 0
0 −1

)
, (2)

at each node of the network. Then the normalization

condition, i.e. conservation of probability, reads

〈0| exp
(∑

σ−j
)
|s〉 = 1, (3)

where |0〉 ≡ |−, · · · ,−〉 is the vacuum state with all

spins down (the packet is absent in the network), and

j numerates nodes of the network. Of course

exp
(∑

σ−j
)

=
∏
j

(1 + σ−j ). (4)



In these notations the master equation becomes

∂t|s〉 = −H|s〉 , (5)

where Ĥ is the Hamiltonian (operator) dependent on

the operational rules of the network determining tran-

sitions between different states and stated in terms of

the spin operators. The Hamiltonian is real and non-

Hermitian. The normalization condition (3) results in

the condition

〈0| exp
(∑

σ−j
)
H = 0, (6)

to be satisfied for any Hamiltonian constructed from

the master equation. An example

H = σ−σ+ − σ+. (7)



Let us now introduce an average of an operator a de-
fined as

〈a〉 ≡ 〈0| exp
(∑

σ−j
)
a|s〉. (8)

A motivation for the definition is clarified if we consider
a diagonal operator, then

〈a〉 =
∑
µ
Pµaµ, (9)

that is the standard statistical average. It will be con-
venient for us to use the designation ϕj = 〈σ−j 〉. Then
using simple algebra one finds 〈σzj 〉 = −1 + 2ϕj and

〈σ+
j 〉 = 1−ϕj. Calculating a time derivative of 〈a〉, one

arrives at the Heisenberg equation

∂t〈a〉 = 〈[H, a]〉, (10)

where we used Eqs. (5,6).



Now we are going to construct the ‘Hamiltonian’ re-
sponsible for the marked packet transmission. We as-
sume that the packet sent by a node i can be received
by a node j with some probability qij depending on the
separation between the nodes i and j. A dependence
of qij on the separation reflects real transmission condi-
tions. We assume that qij has a finite correlation radius.
The rule gives the Hamiltonian H =

∑
iHi, where

Hi = σ+
i σ
−
i −

∏
j

[1 + qijσ
+
j − qijσ

−
j σ

+
j ]σ−i . (11)

One can directly check that the normalization con-
dition (6) is satisfied for the Hamiltonian (11). Our
Corridor and Forward rules can be converted into con-
ditions on qij: they are non-zero provided the node j

lies inside the corridor and is closer to the destination
node than the node i.



Now we calculate in accordance with Eq. (10)

∂tϕi = −ϕi +
∑
j

qji〈σ+
i σ
−
j 〉. (12)

The quantity ϕi can be interpreted as average occu-
pation number of the node i. Therefore the equation
(12) describes a stochastic evolution of a cloud (spot)
of nodes occupied by our marked packet. The spot
moves through the corridor from source to destination.
The equation (12) can be a starting point for a mean
field approximation if we substitute 〈σ+

i σ
−
j 〉 → 〈σ

+
i 〉〈σ

−
j 〉.

Then we obtain the ‘classical’ (mean field) equation

∂tϕi = −ϕi +
∑
j

qjiϕj(1− ϕi). (13)

The approximation is reasonable if the number of com-
municating nodes is large enough.
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A solution of the equation (13) describes a 1d spot
propagation along the corridor. The ϕ profile has a
well defined frond and a tail behind it (see Figure). Un-
fortunately, the tail grows as time goes. That means
that the total number of nodes occupied by our marked
packet increases as time goes. The property is not
pleasant since it leads to diminishing throughput. There-
fore we should introduce additional rules preventing the
occupation number increase and making it constant (in
average). For the purpose we introduce flags on the
modes that can be + or −, and attached to our marked
packet. If the flag is +, then the packet can be received
by the node, otherwise the receipt is forbidden. Initially,
the flag is +, and it is converted to − with some prob-
ability if the node is receiving the packet. The rule kills
the extended tail in ϕi.



Let us formalize the flag dynamics. For the purpose
one can introduce the Pauli matrices τi defined on the
flag space. Then the above rule is converted into the
Hamiltonian

Hi = σ+
i σ
−
i −

∏
j

[1 + τ+
j τ
−
j (qijσ

+
j − qijσ

−
j σ

+
j )]σ−i , (14)

H =
∑
i

Hi − β
∑
i

(τ−i − τ
+
i τ
−
i )σ−i , (15)

where β determines the probability of the flag flip. Now
we derive from Eqs. (10,14,15) the following equations

∂tϕi = −ϕi +
∑
j

qji〈σ+
i σ
−
j τ

+
i τ
−
i 〉, (16)

∂t〈τ+
i τ
−
i 〉 = −β〈τ−i σ

−
i 〉. (17)



Again, it is reasonable to examine the system in the
mean field approximation. Decomposing the right hand
sides of the equations (16,17) we find

∂tϕi = −ϕi +
∑
j

qjiϕj(1− ϕi)φi, (18)

∂tφi = −βϕiφi, (19)

where φi = 〈τ−i 〉. Thus, the effectiveness of the trans-
mission goes dawn as the number of packets passed
through the node increases. That ensures an extension
of the tail. It is clear that the quantity β determines
the spot length (size in the propagation direction). The
length diminishes as β increases. The spot thickness
is determined by the corridor width. Thus, these two
quantities determine an average number of the node
occupied that (asymptotically) does not depend on the
spot position.



Let us consider a model where the corridor is divided
into a number of slices and that the nodes do commu-
nicate between neighbor slices only. Then we obtain
from Eq. (18)

∂tϕ1,α = −ϕ1,α +
∑
β

qβαϕ0,β(1− ϕ1,α)φ1,α, (20)

where the Greece indices numerate nodes inside a slide,
we consider two subsequent slices 0 and 1, and qαβ are
corresponding pair probabilities. The equation (20) can
be further simplified if we assume that all the probabili-
ties are the same for all node pairs from the subsequent
slices. Then the fields ϕ and φ do not depend on α and
we obtain (Q = qn)

∂tϕ1 = −ϕ1 +Qϕ0(1− ϕ1)φ1. (21)

The signal can propagate provided Q > 1.



Let us consider a particular case where Q−1� 1. Then
we can pass to the continuous limit where the equation
for ϕ is transformed to

∂tϕ+ ∂xϕ = εϕ− ϕ2 + (1/2)∂2
xϕ, (22)

where ε = Qφ − 1 and we kept main terms of the
expansion over ε, ϕ and a characteristic length. The
equation (22) describes a field ϕ propagating with the
unit velocity to the right. Near the front φ = 1. If β in
Eq. (17) is small, φ gradually decays behind the front.
Then ϕ is adiabatically adjusted to the value ε and we
obtain from Eq. (17) ∂tφ = −βεφ. Asymptotically, at
large t the field φ passes to 1/Q and we obtain ϕ ≈ ε ∼
(Q−1) exp(−βt) where t is time from the front passing
or, equivalently, distance to the running front. Thus,
β determines the signal length. The case confirms our
general expectations.



One could think about a generalization of our solution

for a more complicated case where the node interac-

tion qij is distance-dependent that makes the corridor

cross-section non-homogeneous and involves a number

of slices into game. We don’t expect something qual-

itative different in this case comparing to our simple

model since the only essential ingredient here is the

corridor homogeneity. Namely, we believe that in this

case a soliton-like solution exists that describes a prop-

agation of the spot from the source to the destination

with the occupation number of nodes that depends on

qij and β.



In the above mean field approximation a probability

to deliver the packet to the destination node is equal

to unity since we deal with a soliton-like solution that

propagates uniformly along the corridor. However, such

soliton-like solution can be destroyed due to some fluc-

tuations. We can imagine two types of such fluctua-

tions, ‘classical’ and ‘quantum’. ‘Classical’ fluctuations

are related to the network loading. Say, the packet den-

sity can be so high that it blocks the packet transmis-

sion. ‘Quantum’ fluctuations are related to processes

where nodes occupied by the marked packet disappear.

That happens, say, if all transmission processes are un-

successful at a time.



Our nearest problem to be solved is to estimate a proba-

bility of ‘quantum’ destruction of the propagating spot.

If N nodes are occupied by the marked packet before

the spot disappearing then a probability of the event

can be estimated as (1− q)nN where n is a number of

potential recipients and the transmission probability q

is assumed to be the same for all recipients. (A gener-

alization for qij is obvious.) The problem is to estimate

N in the expression. Clearly, it should be less than the

average occupation number of nodes in the spot since

(1− q)nN strongly depends on N and some preliminary

process is needed to reduce N . Formally, to estimate

the process we should find an instanton leading from

the soliton-like state to vacuum. That gives a principal

contribution to L0.



The next step could be a consideration of an disordered

network. One could imagine that the disorder produces

a number of ‘bottle necks’ along the corridor thus de-

creasing essentially L0. Another type of quenched dis-

order is related to fluctuations of the probabilities qij
explained by peculiarities of the nodes and of landscape.

Probably, this type of the disorder produce similar ef-

fects creating some ‘bottle necks’. And, finally, all the

effects should be combined together.



Summary

1. We demonstrated that it is possible to formulate

simple rules for the signal transmission through the net-

work ensuring compact spot propagation.

2. We formulated an effective spin Hamiltonian describ-

ing the marked packet propagation and formulated the

mean field approximation.

3. We established phenomena leading the description

out of the mean field approximation and determining

its mean free path.


