Quantum Belief Propagation

M. B. Hastings, T-I3 LANL

Classical Belief Propagation: the transfer matrix

- Solve system of N sites, compute probability distribution of last site
- Add one more site and repeat

Discrete set of states on each site: σ_{i}
Nearest neighbor Hamiltonian: $H=\sum_{i} h_{i, i+1}$
Hamiltonian on first N sites: $\quad h^{(N)} \equiv \sum_{i=1} h_{i, i+1}$

Partition function for chain of N sites:

$$
Z^{(N)}=\sum_{\left\{\sigma_{1}, \ldots, \sigma_{N}\right\}} \exp \left(-\beta h^{(N)}\right)
$$

Probability distribution:

$$
P^{(N)}\left(\sigma_{1}, \ldots, \sigma_{N}\right)=\frac{1}{Z^{(N)}} \exp \left(-\beta h^{(N)}\right)
$$

Probability of last site:

$$
P^{(N)}\left(\sigma_{N}\right)=\sum_{\left\{\sigma_{1}, \ldots, \sigma_{N-1}\right\}} P^{(N)}\left(\sigma_{1}, \ldots, \sigma_{N}\right)
$$

Recursion relation:

$$
P^{(N+1)}\left(\sigma_{N+1}\right) \propto \sum_{\sigma_{N}} P^{(N)}\left(\sigma_{N}\right) \exp \left(-\beta h_{N, N+1}\right)
$$

Quantum belief propagation:

- Analogue of probability on last site is reduced density matrix
- Need window of several sites. Window size is $l_{0}-1$
$\bigcirc \bigcirc \bigcirc^{N+2-l_{0} \quad \ldots . .} \bigcirc^{\mathrm{N}+\mathrm{I}}$

$$
\begin{aligned}
& \rho^{(N)}=\exp \left(-\beta h^{(N)}\right) \\
& \rho_{r e d}^{(N)}=\operatorname{Tr}_{1, \ldots, N+1-l_{0}}\left(\rho^{(N)}\right)
\end{aligned}
$$

Quantum belief propagation:

Construct O such that: $\quad \rho^{(N+1)} \approx O_{N+1} \rho^{(N)} O_{N+1}^{\dagger}$

Support of O_{N+1}
$\rho^{(N+1)}=O_{N+1} O_{N} O_{N-1} \ldots O_{N-1}^{\dagger} O_{N}^{\dagger} O_{N+1}^{\dagger}$
$\rho_{\text {red }}^{(N+1)}=\operatorname{Tr}_{N+2-l_{0}}\left(O_{N+1}\left(\rho_{\text {red }}^{(N)} \otimes 1_{N+1}\right) O_{N+1}^{\dagger}\right)$

Algorithm:

- Initialize reduced density matrix on first $l_{0}-1$ sites
- Iterate completely positive map until convergence
- Compute partition function from normalization
- Observables: insert operator before tracing on first site

Completely positive map: $\quad \rho_{\text {red }} \rightarrow \operatorname{Tr}_{1}\left(O_{N+1}\left(\rho_{\text {red }}^{(N)} \otimes 1_{N+1}\right) O_{N+1}^{\dagger}\right)$
Observables:

$$
\rho_{r e d} \rightarrow \operatorname{Tr}_{1}\left(S_{1}^{z} O_{N+1}\left(\rho_{\text {red }}^{(N)} \otimes 1_{N+1}\right) O_{N+1}^{\dagger}\right)
$$

Performance:

- Computational effort : diagonalize operators of dimension $2^{l_{0}}$ to compute O.
- Window size needed scales as $l_{0} \sim v_{L R} \beta$
- No Trotter error, very accurate at high temperature
- Handle disorder by precomputing operators.

Heisenberg chain:

$$
\begin{aligned}
& \chi_{e x a c t}\left(T_{\max }\right)=0.146926279 \ldots \\
& \chi_{Q B P}\left(T_{\max }\right)=0.146927031 \ldots
\end{aligned}
$$

for I0-by-I0 matrices diagonalized (<.I second CPU time)

Spin-l/2 Heisenberg Chain
 $$
H=\sum \vec{S}_{i} \cdot \vec{S}_{i+1}
$$

thanks A. C.
Klumper for data

FIG. 1: Specific heat against temperature for $l_{0}=3$ (dashed line), 5 (dotted line), 7 (solid line). Curves that go negative are from $-3 \beta^{2} \partial_{\beta}\left\langle S_{i}^{z} S_{i+1}^{z}\right\rangle$. while those that diverge positively are from $\beta^{2} \partial_{\beta}^{2} \log (Z)$. Inset: $l_{0}=9$ and Bethe ansatz.

Spin-I/2 disordered chain:

$H=\sum_{i} J_{i} \vec{S}_{i} \cdot \vec{S}_{i+1}+\sum_{i} K_{i} \vec{S}_{i} \cdot \vec{S}_{i+2}$

FIG. 1: Top: specific heat for the pure system. Middle: uniform susceptibility for the pure system $\left(l_{0}=5,7,9\right.$ are black, red, green respectively) and the disordered system ($l_{0}=5,7,9$ are blue, yellow, brown respectively). Bottom: dimer susceptibility for the pure system $\left(l_{0}=5,7,9\right.$ are black, red, green respectively) and the disordered system $\left(l_{0}=5,7,9\right.$ are blue, yellow, brown respectively).

QBP Equations:

Exact result for small change in H :

$$
\partial_{s} \exp [-\beta(H+s A)]=\eta_{s} \exp \left(-\beta H_{s}\right)+\exp \left(-\beta H_{s}\right) \eta_{s}^{\dagger}
$$

$$
\eta_{s}=-\int \mathrm{d} \omega\left(\frac{\beta}{2}+\beta F(\omega)\right) A^{\omega, s}
$$

Integrate to add site:
$O=\exp \left(\int_{0}^{1} \mathrm{~d} s \eta_{s}\right)$

Conclusions

- Accurate at high temperature
- Works well on loopless models
- Can we extend to loopy models?
- How do the different QBPs relate? (Poulin, Leifer)
- Works well for disorder by precomputing O
- A new kind of transfer matrix

