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e Motivating question: How do states become thermal in first place!?

e Relaxation dynamics in closed systems without environments!?

¢ In what sense can closed many-body systems relax when undergoing
time evolution under local Hamiltonians?

Say, from a numerical analysis, how can this be!?

Summary.— We have demonstrated that an integrable
many-body quantum system—one-dimensional hard-core
bosons on a lattice—can undergo relaxation to an equi-
librium state.

System
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e Setting where “equilibration without an environment” can be studied:

dynamical setting of a sudden quench

e Start with ground state of local Hamiltonian {1 = E h
J

Calabrese, Cardy, Phys Rev Lett 96 (2006)
Eisert, Osborne, Phys Rev Lett 96 (2006) De Chiara, Montangero, Calabrese, Fazio, | Stat Mech 0603 (2006)
Bravyi, Hastings, Verstraete, Phys Rev Lett 97 (2006) Cincio, Dziarmaga, Rams, Zurek, Phys RevA 75 (2007)



o OQ o AV NAYCNAYE® OQ Q OQO e
Q Q0 '©Q 09 © @
0/ V¥ B T D o o ¥ Q

e Setting where “equilibration without an environment” can be studied:

dynamical setting of a sudden quench

e Start with ground state of local Hamiltonian {1 = E h
J

e Sudden change to a new local Hamiltonian V' = g U

J
e Study time evolution under V'

Calabrese, Cardy, Phys Rev Lett 96 (2006)
Eisert, Osborne, Phys Rev Lett 96 (2006) De Chiara, Montangero, Calabrese, Fazio, | Stat Mech 0603 (2006)
Bravyi, Hastings, Verstraete, Phys Rev Lett 97 (2006) Cincio, Dziarmaga, Rams, Zurek, Phys RevA 75 (2007)
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e Renaissance of question as systems become available offering possibility
of probing such issues:

e Cold atoms in optical lattices deliver good control in experiments
Greiner et al, Nature 419 (2002)
Tuchmann et al, cond-mat/0504762
Kinoshita et al, Nature 440 (2006)

e This talk: Setting where one can rigorously study this question

Based on:
Cramer, Dawson, Eisert, Osborne, Phys Rev Lett 100 (2008)

Eisert, Osborne, Phys Rev Lett 96 (2006)
Cramer, Serafini, Eisert, arxiv:0803.0890
In preparation (2008)
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® Briefly: The physics of the problem
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e Bose-Hubbard model:

N N
U
H = —J% biby, + o) kzlb;;bk(b}gbk —1)— ukzlb;;bk
7 ~ -

V==J) blb
(7.k)

e Standing wave laser light, lattice constant half wavelength,
forming optical lattice
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e Bose-Hubbard model:

N N
U
H=-JY b+ o) > bhbr(bhbe — 1) — ) blby
k=1

(7,k) k=1
Superfluid V59" 8 L
Mott phase T
> e Phase coherence and absence thereof
U in Mott and superfluid phase
A ".'.-. o ".o." o
e w8
9. £ e

Greiner et al, Nature 419 (2002)
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e Bose-Hubbard model*

A H_—JZbTkar Zb*bk blby — 1) — Zzﬁbk

(7,k) k=1

e Here, sudden quench from some
O clustering state from gapped

O
_/Superﬂuid (AE > () Mott phase to

Mott Phai) 7 e deep superfluid I/
<’

U e Other more general cases later

Cramer, Dawson, Eisert, Osborne, Phys Rev Lett 100 (2008)



e Initial state:

e Product state of deep Mott phase W(O)) = \m>®N

having 1M bosons per site

e Clustering state: Fourth moments of canonical coordinates exist and

C LT Wedooy = (1L Wesd ooy (1] Wey ooy < e85

JjEAUB jeEA jeB
(D X —p s P _
We, = ! PiXi =i Fj) ,Weyl (displacement) operators

e Then quench and study time evolution

[B(t) = eV [1(0))



® Relaxation?



e So, what do we find?

e |s time-dependent non-equilibrium system, so it “wobbles” forever...?
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P(t) = eV [1(0)) ps(t) = tr([1p(2)) (W (t)]]

e The claim: It does relax exactly for any subblock!

ps(t) — pa

e Remarkably, exact convergence, no time average
e Becomes a maximal entropy (Gaussian) state under energy constraint

e Block maximally entangled with rest of chain

S(trp(|9(1)) (¥ (1)])) — max

Cramer, Dawson, Eisert, Osborne, Phys Rev Lett 100 (2008), cond-mat/07033 14
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P(t) = eV [1(0)) ps(t) = tr([1p(2)) (W (t)]]

e Theorem: Letp(0)be a clustering 1D state (e.g., product in deep Mott)

Then, for any € > 0 and any desired “recurrence time trec > 0 there
ex.a system size /V and a relaxation time ;o] > 0 such that time evolved
state p(t) = e~V p(0)e" satisfies

1ps(t) — palli < e

for t € [trel, trel + troc)

Cramer, Dawson, Eisert, Osborne, Phys Rev Lett 100 (2008), cond-mat/07033 14
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e So, well, it does relax!

e How can this be?




® |deas of proof



e Observation I: There is a finite speed of information transfer:

I[A; Bll|oc = 0



e Observation I: There is a finite speed of information transfer:

e Lemma (Lieb-Robinson): For any two (finite-dim) observables, on a
finite support, . = d( A, B) apart from each other, we have

1[A(2), B(0)][loo < ¢f|Alloo|| Blloo exp(—pdist(A, B) — vlt])

A(t) _ ethAe—z'Ht

U Speed of information transfer, /1 local Hamiltonian

Lieb, Robinson, Commun Math Phys 28 (1972)
Hastings, Phys Rev Lett 93 (2004)



e Observation I: There is a finite speed of information transfer:

e Lemma (harmonic Lieb-Robinson): Similar statements, e.g., for

sites 7, k _dist(j,k)/R cosh(7)
Il (0, P O)}oe < G = D720

00 , X, P coupling matrices of local Ham

7 = max{||[PX[ % | X P L}

e Gives bounds for || [We (%), Wer]|| oo for Weyl-operators

W£ — eiZjEA(ijj_ijj) ’ g: (3317. .. 7Qj|A"p1’_ . ,p|A|)

Cramer, Serafini, Eisert, arxiv:0803.0890
Nachtergaele, Raz, Schlein, Sims, arxiv:0712.3820
Buerschaper, Wolf, Cirac, in preparation
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e Intuition: Finite speed of sound in the system

e Excitation starting to travel from each site

e Generically true for local dynamics v



e Regime (i): Outside the “cone”: Influence messy, but is exponentially suprfessed!

e Causality in the lattice system: Lieb-Robinson bounds ;

\4




e Regime (ii): Inside the “cone”?
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e Phase space picture:

ON and a single site s = 1 A

e For simplicity, let us start from|m) im ()

£

re(
e Characteristic function in phase space o € C:

N
x;(a;t) = H<m‘ea[v<t>];kbi—a*[v<t>]i,jbk‘m>
k=1

N
= e 12 TT Lo (1818 ?)
k=1

where (3, (1) = @[V(t)];,k

N
. V(t) _ e_ztj ’ V}"]{(t) _ ~ 2 :€2thcos(27rl/N)627m(]—k)l/N
=1



e Then, collect bounds:

e For example

Vik(t) — Jj_k() (2)] < 3 2 >0)

bound Riemann sum error for small (j — k)/N

e Collect bounds onV/ (%) from Lieb-Robinson bounds and properties of
Laguerre polynomials

N o
e Gives bounds on, say, Z Z ’ﬁg k| ))

k=1 (=2



e Observation 2: Take logarithm of characteristic function (3, x(t) = a|[V (1)]; 1)

e Lemma:

N
log x;j(a;t) = —|a?/2 + log | [ Lm(18) k)

k=1
— _|a)?/2 — mz 1B;.1|?
ﬁjk
ST

= —(m + 1)\a|2/2 + g(a; N, t)

e Only the quadratic leading order term remains for large times

e Dynamical central limit theorem!
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e Lemma: Pointwise convergence in phase space for (au; t) gives
trace-norm estimate ||.||; for states

e State converges to a Gaussian inside the cone, thermal state: Maximal entropy/
entanglement for given energy



e Observation 3: One can always “put the two regimes together””:

e Proof that for large systems, the local(!) state becomes arbitrarily v
mixed, the system relaxes



e More generally, covering case of clustering initial states:

e ldeas of a ““quantum version of Lindeberg’s central limit theorem”

e Starting point: Take vector £ = (L1, ..., Tn,P1y---,Pn)
in phase space

then function f : R — C as f(z) = x(&x)

is a classical characteristic function, when X (§) = tr[Wep]
is quantum characteristic function

Projection of Wigner function (Fourier transform
of characteristic function) is probability distribution



e More generally, covering case of clustering initial states:

e |deas of a ““quantum version of Lindeberg’s central limit theorem”:
Let.S; € {1,..., N }be mutually disjoint subsets, and let

Xj(z) = (¥ H Weay ) be four times continuously differentiable, with

WIS (a0l — aZan)) ) = @l (3 (azal — ata;))|y) =0

kesS; kGS

and A; —\<¢!(Z(agaﬁ;—a a;)) )< 1
keS;
Then N N
ol = 537 45 < 3 37(B) + Ay max Ay)
kES,; j=1 J=1
where B, —W!(Z( jal — aja;))"|¥))
keS;

e Hard work here: Show that quantum lattice system satisfies conditions

In preparation (2008)



e Intuition for all that: Non-equilibrium dynamics:
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e Globally, the information of the initial condition is preserved at all times

e Locally, the system looks exactly relaxed, as if in a thermal state,
without time average

e More general results: - With product states in any dimension
- >| D any clustering initial state
- Fermionic models



® Area laws for the entanglement entropy
and hardness of simulation



e Area laws for entanglement entropy for quenched systems
(finite local dimension)

Eisert, Osborne, Phys Rev Lett 97 (2006)
Bravyi, Hastings, Verstraete, Phys Rev Lett 97 (2006)



S(s) = —tr[ps(t) log ps(t)]
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e Area laws for entanglement entropy for quenched systems:

Any state p(t) = e_ith(O)eitH,where H is alocal ID (finite-dim)
Hamiltonian and p(0) a product satisfies an area law:

S(s) < cot + ¢1
for some constants Cg, C1

Proof: E.g., from Lieb-Robinson bounds and Weyl’s perturbation theorem

Eisert, Osborne, Phys Rev Lett 97 (2006)
Bravyi, Hastings, Verstraete, Phys Rev Lett 97 (2006)



S(s) = —tr[ps(t) log ps(t)]
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e Unfortunately, previous result shows that bound is saturated:

Take initial product state, |-norm convergence to Gaussian states implies
for entanglement entropy (now for infinite-dim case)

Ss(t) > cot — f(2)

with f(t) = o(t)fors > ct, N > Ny

Cramer, Dawson, Eisert, Osborne, Phys Rev Lett 100 (2008)

Alternative, more recent proof: Schuch, Wolf,Vollbrecht, Cirac, arxiv:0801.2078
See also Calabrese, Cardy, | Stat Mech P10004 (2007)



S(s) = —tr[ps(t) log ps(t)]
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e No efficient matrix-product state approximation of state exists,
so t-DMRG cannot work efficiently

d
ST Al A i, i)
i1, iN=

Cramer, Dawson, Eisert, Osborne, Phys Rev Lett 100 (2008)

using Schuch, Wolf,Verstraete, Cirac, Phys Rev Lett 100 (2008)
Alternative, more recent proof: Schuch, Wolf,Vollbrecht, Cirac, arxiv:0801.2078
See also Calabrese, Cardy, | Stat Mech P10004 (2007)



® Experimental steps



e Very similar situation realizable in experiment (+thermal noise, harmonic trap)

e But, hardest thing to probe are local quantitites!

e Easier to probe in optical lattices: Quasi-momentum distribution
from time of flight N

S(g,t) =Y e0=R(blp,)

7,k=1



e Very similar situation realizable in experiment (+thermal noise, harmonic trap)

e But, hardest thing to probe are local quantitites!

e Easier to probe in optical lattices: Quasi-momentum distribution
from time of flight

N
_ q(j—k) /1T
S(g.t) = 3 €16 (bl
j,k=1
e Sadly, this does not relax 5(q,1)
51
e This is good news, not bad news: o
Quantity is “too global”, shows o
memory of initial conditions” 49.5 |
49
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e Very similar situation realizable in experiment (+thermal noise, harmonic trap)

e But, hardest thing to probe are local quantitites!

e Easier to probe in optical lattices: Quasi-momentum distribution
from time of flight

N
S(g,t) = _ €U (blb,)

J,k=1
e Sadly, this does not relax
e Or, it probes the boundary

conditions/harmonic confining
potential (with harmonic trap):




e In turn, local properties may be hard to probe

e But: Use idea of superlattice! Period 2 properties measurable

o @ o o O @)

Eisert, Cramer, Flesch, Osborne, Schollwock in some order (2008)
Foelling, Trotzky, ..., Bloch, Nature 448 (2007)



e In turn, local properties may be hard to probe

e But: Use idea of superlattice! Period 2 properties measurable
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Eisert, Cramer, Flesch, Osborne, Schollwock in some order (2008)



e In turn, local properties may be hard to probe

e But: Use idea of superlattice! Period 2 properties measurable

@) @) @) o @) @)
e Extensive numerical work with 1 —_— ey
t-DMRG: o

08

Supports analytical findings in free
case for realistic parameters for Rb ;|
in optical lattices

04
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e In turn, local properties may be hard to probe

e But: Use idea of superlattice! Period 2 properties measurable
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e Extensive numerical work with

t-DMRG:

Relaxation to thermal state,
see 1/U dependence
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e S0 again, experiment could probe non-equilibrium relaxation dynamics:

e Globally, Fourier-transform type quantities do not relax due to
preserved information of initial condition

e Locally, or at least with period-2 symmetry, the system looks
relaxed, can also measure cumulants and higher moments

e Experiment using cold Rb atom is in progress this moment in Bloch’s group



® Summary and outlook



e Have seen: Quantum lattice systems can locally, exactly relax without time
average in quenched non-equilibrium dynamics

e Ideas: - Lieb-Robinson bounds

- Quantum central limit theorems
e Area laws
e Steps towards experimental realization

e Open questions:

- More on interacting models?

- Relationship to kinematical approaches?
- Random unitaries, unitary 2-designs?

- Relationship to Ackermann numbers? :)



