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 Motivating question: Thermalizing open quantum systems
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 Relaxation dynamics in closed systems without environments?

System

 In what sense can closed many-body systems relax when undergoing 
   time evolution under local Hamiltonians?

Say, from a numerical analysis, how can this be?

 Motivating question: How do states become thermal in first place?



 Setting where “equilibration without an environment” can be studied:

  dynamical setting of a sudden quench

 Start with ground state of local Hamiltonian H =

∑

j

hj

De Chiara, Montangero, Calabrese, Fazio, J Stat Mech 0603 (2006)
Cincio, Dziarmaga, Rams, Zurek, Phys Rev A 75 (2007)

Calabrese, Cardy, Phys Rev Lett 96 (2006)
Eisert, Osborne, Phys Rev Lett 96 (2006)
Bravyi, Hastings, Verstraete, Phys Rev Lett 97 (2006)



 Setting where “equilibration without an environment” can be studied:

  dynamical setting of a sudden quench

 Start with ground state of local Hamiltonian H =

∑

j

hj

V =

∑

j

vj Sudden change to a new local Hamiltonian

 Study time evolution under V

De Chiara, Montangero, Calabrese, Fazio, J Stat Mech 0603 (2006)
Cincio, Dziarmaga, Rams, Zurek, Phys Rev A 75 (2007)

Calabrese, Cardy, Phys Rev Lett 96 (2006)
Eisert, Osborne, Phys Rev Lett 96 (2006)
Bravyi, Hastings, Verstraete, Phys Rev Lett 97 (2006)



 Cold atoms in optical lattices deliver good control in experiments   
  

 Renaissance of question as systems become available offering possibility 
   of probing such issues:

 This talk: Setting where one can rigorously study this question

Greiner et al, Nature 419 (2002)
Tuchmann et al, cond-mat/0504762
Kinoshita et al, Nature 440 (2006)

Based on:
Cramer, Dawson, Eisert, Osborne, Phys Rev Lett 100 (2008) 
Eisert, Osborne, Phys Rev Lett 96 (2006)
Cramer, Serafini, Eisert, arxiv:0803.0890
In preparation (2008)



 Overview of talk



• Briefly: The physics of the problem



H = −J
∑

〈j,k〉

b†jbk +
U

2

N∑

k=1

b†kbk(b†kbk − 1) − µ

N∑

k=1

b†kbk

 Bose-Hubbard model:

 Standing wave laser light, lattice constant half wavelength, 
   forming optical lattice

V = −J
∑

〈j,k〉

b
†
jbk
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 Bose-Hubbard model:

 Phase coherence and absence thereof
   in Mott and superfluid phase

Greiner et al, Nature 419 (2002)
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 Here, sudden quench from some
   clustering state from gapped
   (               ) Mott phase to

 Bose-Hubbard model:

Cramer, Dawson, Eisert, Osborne, Phys Rev Lett 100 (2008)

µ

U

J

U

Mott phase

Superfluid ∆E > 0

 deep superfluid 

 Other more general cases later 

V



 Initial state:

|ψ(0)〉 = |m〉⊗N
 Product state of deep Mott phase                                
   having      bosons per sitem

 Then quench and study time evolution

|ψ(t)〉 = e−itV |ψ(0)〉

 Clustering state: Fourth moments of canonical coordinates exist and

Wξj
= e

i(pjXj−xjPj)

,

, Weyl (displacement) operators

〈
∏

j∈A∪B

Wξj
〉ρ(0) − 〈

∏

j∈A

Wξj
〉ρ(0)〈

∏

j∈B

Wξj
〉ρ(0) ≤ e

−µdist(A,B)



• Relaxation?



 So, what do we find? 

 Is time-dependent non-equilibrium system, so it “wobbles” forever...?



 The claim: It does relax exactly for any subblock!

 Remarkably, exact convergence, no time average

 Block maximally entangled with rest of chain

s

S(trB(|ψ(t)〉〈ψ(t)|)) → max

 Becomes a maximal entropy (Gaussian) state under energy constraint

Cramer, Dawson, Eisert, Osborne, Phys Rev Lett 100 (2008), cond-mat/0703314

|ψ(t)〉 = e−itV |ψ(0)〉 ρs(t) = tr[|ψ(t)〉〈ψ(t)|]

ρs(t) → ρG



 Theorem: Let        be a clustering 1D state (e.g., product in deep Mott)

s

|ψ(t)〉 = e−itV |ψ(0)〉 ρs(t) = tr[|ψ(t)〉〈ψ(t)|]

ρ(0)

 Then, for any            and any desired “recurrence time                there
   ex. a system size     and a relaxation time                such that time evolved
   state                                      satisfies

   for 

N trel > 0

t ∈ [trel, trel + trec]

‖ρs(t) − ρG‖1 < ε

ρ(t) = e−itV ρ(0)eitV

ε > 0 trec > 0

Cramer, Dawson, Eisert, Osborne, Phys Rev Lett 100 (2008), cond-mat/0703314



 So, well, it does relax!

 How can this be?

s



• Ideas of proof



 Observation 1: There is a finite speed of information transfer:

A B

‖[A, B]‖∞ = 0



 Lemma (Lieb-Robinson): For any two (finite-dim) observables, on a 
   finite support,                       apart from each other, we have

A(t) = e
iHt

Ae
−iHt

A B

v Speed of information transfer,     local Hamiltonian

 Observation 1: There is a finite speed of information transfer:

L = d(A, B)

Lieb, Robinson, Commun Math Phys 28 (1972)
Hastings, Phys Rev Lett 93 (2004)

H

||[A(t), B(0)]||∞ ≤ c‖A‖∞‖B‖∞ exp(−µdist(A, B) − v|t|)



 Lemma (harmonic Lieb-Robinson): Similar statements, e.g., for
   sites  

A B

 Observation 1: There is a finite speed of information transfer:

j, k

τ = max{‖PX‖1/2

∞
, ‖XP‖1/2

∞
}|t|

Cramer, Serafini, Eisert, arxiv:0803.0890
Nachtergaele, Raz, Schlein, Sims, arxiv:0712.3820
Buerschaper, Wolf, Cirac, in preparation

,          coupling matrices of local HamX, P

 Gives bounds for                              for Weyl-operators

Wξ = e
i
∑

j∈A
(pjXj−xjPj)

‖[Wξ(t), Wξ′ ]‖∞

ξ = (x1, . . . , x|A|, p1, . . . , p|A|),

‖[xj(t), pk(0)]}∞ ≤
τdist(j,k)/R cosh(τ)

(dist(j, k) − 1)/2))!



 Intuition: Finite speed of sound in the system

 Excitation starting to travel from each site

s

 Generically true for local dynamics
t

0



 Regime (i): Outside the “cone”: Influence messy, but is exponentially supressed!

 Causality in the lattice system: Lieb-Robinson bounds

s

L(t)

t



 Regime (ii): Inside the “cone”?

s

L(t)

t



 For simplicity, let us start from            , and a single site|m〉⊗N
s = 1

 Phase space picture:

re(α)

im(α)

βj,k(t) = α[V (t)]∗j,k

α ∈

= e−|α|2/2

N∏

k=1

Lm(|βj,k(t)|2)

χj(α; t) =
N∏

k=1

〈m|eα[V (t)]∗j,kb
†
k
−α∗[V (t)]i,jbk |m〉

 Characteristic function in phase space            :

where

V (t) = e
−itJ

                          , Vj,k(t) =
1

N

N∑

l=1

e
2itJ cos(2πl/N)

e
2πi(j−k)l/N



 Then, collect bounds:

Vj,k(t) → Jj−k(t)

(j − k)/N

 For example

(Bessel functions,                                          ) |Jl(x)| < x−1/3, x ≥ 0

bound Riemann sum error for small 

 Collect bounds on         from Lieb-Robinson bounds and properties of 
   Laguerre polynomials

V (t)

N∑

k=1

∞∑

l=2

(1 − Lm(|βj,k|2))l

l

 Gives bounds on, say, 



 Observation 2: Take logarithm of characteristic function (                                 )

log χj(α; t) = −|α|2/2 + log
N∏

k=1

Lm(|βj,k|
2)

= −|α|2/2 − m
N∑

k=1

|βj,k|
2 +

N∑

k=1

lm(|βj,k|
2)

−
N

∑

k=1

∞
∑

l=2

(

1 − Lm(|βj,k|2)
)l

l

 Lemma:   

 Dynamical central limit theorem!

 Only the quadratic leading order term remains for large times

= −(m + 1)|α|2/2 + g(α;N, t)

βj,k(t) = α[V (t)]∗j,k



s

L(t)

 State converges to a Gaussian inside the cone, thermal state: Maximal entropy/
   entanglement for given energy

 Lemma: Pointwise convergence in phase space for               gives 
   trace-norm estimate         for states‖.‖1

χj(α; t)

χj(α; t) = e−(m+1/2)|α|2 + f(α; t)



 Observation 3: One can always “put the two regimes together”: 

s

L(t)

 Proof that for large systems, the local(!) state becomes arbitrarily
   mixed, the system relaxes
 

t



 Starting point: Take vector                                     
   in phase space

   then function                     as
  
    is a classical characteristic function, when 
    is quantum characteristic function

 More generally, covering case of clustering initial states:

 Ideas of a “quantum version of Lindeberg’s central limit theorem”

f(x) = χ(ξx)f : →

χ(ξ) = tr[Wξρ]

ξ = (x1, . . . , xn, p1, . . . , pn)

x

p

Projection of Wigner function (Fourier transform 
of characteristic function) is probability distribution



 More generally, covering case of clustering initial states:

 Ideas of a “quantum version of Lindeberg’s central limit theorem”:
   Let                             be mutually disjoint subsets, and let 

                                                  be four times continuously differentiable, with

    and

    Then

    where 

 Hard work here: Show that quantum lattice system satisfies conditions

Sj ∈ {1, . . . , N}

χj(x) = 〈ψ|
∏

k∈Sj

Wxαk
|ψ〉

〈ψ|
(

∑

k∈Sj

(αja
†
j − α∗

jaj)
)

|ψ〉 = 〈ψ|
(

∑

k∈Sj

(αja
†
j − α∗

jaj)
)3
|ψ〉 = 0

Aj := |〈ψ|
(

∑

k∈Sj

(αja
†
j − α∗

jaj)
)2
|ψ〉| ≤ 1

∣

∣

∣

∣

N
∑

j=1

log〈ψ|
∏

k∈Sj

Wαj
|ψ〉 −

1

2

N
∑

j=1

Aj

∣

∣

∣

∣

≤
1

4

N
∑

j=1

(Bj + Aj max
k

Ak)

Bj := |〈ψ|
(

∑

k∈Sj

(αja
†
j − α∗

jaj)
)4
|ψ〉|

In preparation (2008)



 Intuition for all that: Non-equilibrium dynamics:

 Locally, the system looks exactly relaxed, as if in a thermal state, 
   without time average

 Globally, the information of the initial condition is preserved at all times

 More general results: 	 - With product states in any dimension
	 	 	 	 	 	 	 	 - >1D any clustering initial state
	 	 	 	 	 	 	 	 - Fermionic models



• Area laws for the entanglement entropy 
and hardness of simulation



t

Eisert, Osborne, Phys Rev Lett 97 (2006)
Bravyi, Hastings, Verstraete, Phys Rev Lett 97 (2006)

0
S(s) = −tr[ρs(t) log ρs(t)]

 Area laws for entanglement entropy for quenched systems 
   (finite local dimension)



t

Eisert, Osborne, Phys Rev Lett 97 (2006)
Bravyi, Hastings, Verstraete, Phys Rev Lett 97 (2006)

0
S(s) = −tr[ρs(t) log ρs(t)]

 Area laws for entanglement entropy for quenched systems:

   Any state                                      , where      is a local 1D (finite-dim) 
   Hamiltonian and         a product satisfies an area law: 

   for some constants

   Proof: E.g., from Lieb-Robinson bounds and Weyl’s perturbation theorem                            

ρ(t) = e−itHρ(0)eitH
H

ρ(0)

S(s) ≤ c0t + c1

c0, c1



t

Alternative, more recent proof: Schuch, Wolf, Vollbrecht, Cirac, arxiv:0801.2078
See also Calabrese, Cardy, J Stat Mech P10004 (2007)

0
S(s) = −tr[ρs(t) log ρs(t)]

 Unfortunately, previous result shows that bound is saturated:

   Take initial product state, 1-norm convergence to Gaussian states implies
    for entanglement entropy (now for infinite-dim case)

    with                     for            ,                

Ss(t) ≥ c0t − f(t)

f(t) = o(t) s ≥ ct N ≥ N0

Cramer, Dawson, Eisert, Osborne, Phys Rev Lett 100 (2008)



t

0
S(s) = −tr[ρs(t) log ρs(t)]

 No efficient matrix-product state approximation of state exists,
   so t-DMRG cannot work efficiently

Cramer, Dawson, Eisert, Osborne, Phys Rev Lett 100 (2008)
using Schuch, Wolf, Verstraete, Cirac, Phys Rev Lett 100 (2008)

|ψ〉 =
d∑

i1,...,iN=1

tr[A(1)
i1

. . . A
(N)
iN

] |i1, . . . , iN 〉

Alternative, more recent proof: Schuch, Wolf, Vollbrecht, Cirac, arxiv:0801.2078
See also Calabrese, Cardy, J Stat Mech P10004 (2007)



• Experimental steps



 Easier to probe in optical lattices: Quasi-momentum distribution 
   from time of flight

S(q, t) =
N∑

j,k=1

eiq(j−k)〈b†jbk〉

 Very similar situation realizable in experiment (+thermal noise, harmonic trap)

 But, hardest thing to probe are local quantitites! 



 Easier to probe in optical lattices: Quasi-momentum distribution 
   from time of flight

 Sadly, this does not relax

S(q, t) =
N∑

j,k=1

eiq(j−k)〈b†jbk〉

 This is good news, not bad news: 
   Quantity is “too global”, shows
   memory of initial conditions”

 Very similar situation realizable in experiment (+thermal noise, harmonic trap)

 But, hardest thing to probe are local quantitites! 



 Easier to probe in optical lattices: Quasi-momentum distribution 
   from time of flight

 Sadly, this does not relax

S(q, t) =
N∑

j,k=1

eiq(j−k)〈b†jbk〉

 Or, it probes the boundary
   conditions/harmonic confining
   potential (with harmonic trap):

 Very similar situation realizable in experiment (+thermal noise, harmonic trap)

 But, hardest thing to probe are local quantitites! 



 But: Use idea of superlattice! Period 2 properties measurable

 In turn, local properties may be hard to probe

Eisert, Cramer, Flesch, Osborne, Schollwock in some order (2008)
Foelling, Trotzky, ... , Bloch, Nature 448 (2007)



 In turn, local properties may be hard to probe

 Even-odd cut is just
   as if we had local
   dynamics:

   Relaxation as           
   for large times

t
−1/3

 But: Use idea of superlattice! Period 2 properties measurable

Eisert, Cramer, Flesch, Osborne, Schollwock in some order (2008)



 In turn, local properties may be hard to probe

 Extensive numerical work with 
   t-DMRG: 

   Supports analytical findings in free 
   case for realistic parameters for Rb 
   in optical lattices

 But: Use idea of superlattice! Period 2 properties measurable



 In turn, local properties may be hard to probe

 But: Use idea of superlattice! Period 2 properties measurable

 Extensive numerical work with 
   t-DMRG: 

   Relaxation to thermal state,
   see         dependence1/U



 So again, experiment could probe non-equilibrium relaxation dynamics:

 Locally, or at least with period-2 symmetry, the system looks 
   relaxed, can also measure cumulants and higher moments

 Globally, Fourier-transform type quantities do not relax due to
   preserved information of initial condition

 Experiment using cold Rb atom is in progress this moment in Bloch’s group



• Summary and outlook



 Have seen: Quantum lattice systems can locally, exactly relax without time
   average in quenched non-equilibrium dynamics

 Ideas: - Lieb-Robinson bounds
" "  - Quantum central limit theorems
 Area laws
 Steps towards experimental realization

 Open questions:
- More on interacting models?
- Relationship to kinematical approaches?
- Random unitaries, unitary 2-designs?
- Relationship to Ackermann numbers? :)

Thanks for your attention!


