## Quantum phase transitions and quantum information

#### Fernando M. Cucchietti Los Alamos National Laboratory





# Overview

- Quantum (and classical) phase transitions
  - Critical points, exponents, and universality
- Quantum information perspective
  - Ground state fidelity
  - Time dependent GSF and decoherence
- Algorithms and experimental implementation with NMR & cold atoms

## Quantum phase transitions

In general, a QPT occurs in a quantum many body system when there is competition between two parts of the total Hamiltonian:

$$\mathcal{H} = \mathcal{H}_0 + \lambda \mathcal{H}_1$$



## Quantum phase transitions

Example: Ising chain with transverse field

$$\mathcal{H} = -J\left(\sum_{i} \sigma_{i}^{z} \sigma_{i+1}^{z} + \lambda \sigma_{i}^{x}\right)$$



## Quantum phase transitions

Example: Ising chain with transverse field

$$\mathcal{H} = -J\left(\sum_{i} \sigma_{i}^{z} \sigma_{i+1}^{z} + \lambda \sigma_{i}^{x}\right)$$

- At the critical point:
  - The gap closes (in thermodynamical limit), equivalent to critical slowing down  $(\tau \sim 1/\Delta)$
  - Quantum correlations diverge with critical exponents  $\xi \sim |\lambda \lambda_c|^{-\nu}$
  - Universality (as in classical PT) can be defined and observed



### QPTs and quantum information

 Scaling of entanglement at the critical point (not surprising, entanglement ~ correlations)



• Alas, we'll take another route

### QPTs and fidelity

Ground state fidelity:  $f_{\delta}(\lambda) = \langle g(\lambda) | g(\lambda + \delta) \rangle$ 

Rationale: two ground states in the same phase are very similar, and orthogonal if in different phases.

Rationale works, and fidelity contains much more information than just the critical point

> Cozzini, Ionicioiu, Zanardi, Phys. Rev. B 76, 104420 (2007)



#### Ground state fidelity

Type of discontinuity depends on the order of transition



#### Ground state fidelity

## The scaling of the second derivative of the fidelity relates to the critical exponents



Also see Venuti and Zanardi, PRL 99, 095701 (2007)

#### Time dependent GSF

#### Switch to time domain

$$D_{\lambda}(\omega) = \langle g(\lambda) | \, \delta(\omega - \mathcal{H}_{\lambda+\delta}) \, | g(\lambda) \rangle$$

A local density of states

$$M(t) = \left| \int D_{\lambda}(\omega) e^{i\omega t} d\omega \right|^2$$

A Loschmidt echo

$$\mathbf{\hat{X}}_{M}(t) = \left| \left\langle g(\lambda) | e^{i\mathcal{H}_{\lambda}t} e^{-i\mathcal{H}_{\lambda+\delta}t} | g(\lambda) \right\rangle \right|^{2}$$

- Quantum chaos
- Measures sensitivity to perturbations
- Measures fidelity of a quantum simulation
- Measures decoherence

#### Loschmidt echo and decoherence

Quan et al PRL 96, 140604 (2006), FMC et al PRA 75, 032337 (2007)

$$M(t) = \left| \left\langle g(\lambda) | e^{i\mathcal{H}_{\lambda}t} e^{-i\mathcal{H}_{\lambda+\delta}t} | g(\lambda) \right\rangle \right|^2$$

Sensitivity to perturbations is used to detect proximity to critical point: far from  $\lambda_c$ , evolutions are similar, near  $\lambda_c$  system undergoes large changes even for small perturbation.

#### Long time behavior

Result from quantum chaos: M decays to I/# states needed to represent unperturbed states with perturbed Hamiltonian = strong decay only near critical point.



$$M(t) = \left| \left\langle g(\lambda) | e^{i\mathcal{H}_{\lambda}t} e^{-i\mathcal{H}_{\lambda+\delta}t} | g(\lambda) \right\rangle \right|^2$$

#### **Short time behavior**

Perturbation theory gives:

$$M(t) \cong \exp[-\alpha(\lambda) \ \delta^2 t^2]$$

Where  $\alpha$  is monotonic with  $\lambda$ , first derivative has singularity at critical point. Numerical evidence (no proof) suggests that critical exponents are encoded in higher derivatives of  $\alpha$ .



• Decay rate has universality features

$$H(\lambda) = \sum_{k} \epsilon_{k}(\lambda) \left(\gamma_{k}^{\dagger}(\lambda)\gamma_{k}(\lambda) + 1/2\right)$$
$$\gamma_{k}(\lambda_{1}) = \cos(\theta_{k})\gamma_{k}(\lambda_{2}) - i\sin(\theta_{k})\gamma_{-k}^{\dagger}(\lambda_{2})$$

$$m(t) = \prod_{k>0} \cos^2(\theta_k) e^{i\epsilon_k(\lambda_2)t} + \sin^2(\theta_k) e^{-i\epsilon_k(\lambda_2)t}$$

$$f_d(\lambda) = \prod_{k>0} \cos(\theta_k)$$



FMC et al PRA 75, 032337 (2007)





Zanardi et al PRA 75, 032109 (2007)

Temperature is ok (not so high)

### The "Algorithm"

- Prepare initial state (can be T>0)
- Measure decoherence vs  $\lambda$
- Minimum decoherence signals critical point, derivatives give critical exponents
- An instance of a 1-qubit quantum computer...?
- But we can get rid of the other part using a quantum simulator









FMC et al PRA 75, 032337 (2007)

#### Time reversal in an optical lattice

$$M(t) = \left| \left\langle g(\lambda) | e^{i\mathcal{H}_{\lambda}t} e^{-i\mathcal{H}_{\lambda+\delta}t} | g(\lambda) \right\rangle \right|^2$$

• The LE can be achieved by changing the sign of H (imperfect time reversal)  $U = \frac{2U}{4} + \frac{6U}{4} + \frac{6U}$ 

 $H = -J \sum_{\langle i,j \rangle} a_i^{\dagger} a_j + a_j^{\dagger} a_i + U \sum_i n_i (n_i - 1)$ 

FMC guant-ph/0609202

Apply linear ramp potential of slope F for a short time  $\tau$  $e^{iF\tau x}a_i^{\dagger}a_{i+1}e^{-iF\tau x}$  $\Rightarrow e^{iF\tau}a_i^{\dagger}a_{i+1}$ 

$$U \propto a_S \int |\psi_w(r)|^2 d^3r$$

A Feshbach resonance is used to tune  $a_S \Rightarrow -a_S$ 

$$F\tau = \pi \equiv J \Rightarrow J$$

#### Time reversal in an optical lattice

Perform time reversal with fixed error and look at decay of M as a function of parameters





Further, we can make sensors by putting the system near criticality and looking at decay of M



#### Conclusions

- Quantum information brings a fresh perspective to the quantum phase transitions field.
- Fidelity is well suited for certain transitions where study of correlations needs very large systems.
- Fidelity works well with MPS (and PEPS?) classical simulations (can it provide better estimates of critical points, exponents?).
- Study/define non-equilibrium quantum phase transitions
- What is the behavior of classical fidelity in normal PT?