
Using the renormalization group to
classify Boolean functions

S. N. Coppersmith
Department of Physics

University of Wisconsin, Madison

J. Stat. Phys. 130, 1065 (2008)

Outline

• Boolean functions: review
• Why classify Boolean functions?
• Renormalization group (RG): review
• RG transformation for Boolean functions and

definition of phases
– Generic phase
– Non-generic functions and non-generic phases

• Possible relations between phases and
computational complexity classes

Boolean functions
• Boolean variable takes on one of two values (1 or 0)

(= Ising spin)
• A Boolean function is a function of Boolean inputs that yields

a Boolean output (can be defined by specifying output value
for each of the 2N input configurations)

• There are Boolean functions of N variables

A Boolean
function of 3
Boolean
variables:

x1 x2 x3 f(x1,x2,x3)
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 1

!

2
2
N

Classifying Boolean functions gives
insight into difference between “typical”

and “atypical” Boolean functions
A “typical” Boolean function has output values chosen to

be either zero or one independently and randomly for
each input configuration

Almost all Boolean functions are “typical”
But almost all functions cannot be feasibly computed (e.g.,

in time that grows at most polynomially with N).

!

2
2
N

>> 2
AN

B

of Boolean
functions of N
Boolean
arguments

of Boolean functions
that can be computed
with resources bounded
polynomially with N

C.Shannon, Bell System Technical Journal 28, 59-98 (1949)

How to tell if an individual realization is “generic”?

These two sequences are equally likely to be found
by selecting values independently and randomly
to be 0 or 1 with equal probability.

But the second sequence is more “typical.”

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 1 1 0 1 0 0 1 1 1 0 0 1

 (Note that can convert functions to strings by listing outputs for input
configurations in lexigraphical order)

How does one determine whether or not a
function is typical?

This is a key question in the field of
computational complexity, the study of how
computational resources needed to solve a
problem grow with size of problem specification.
(One way to show a function is not typical is to
display an algorithm for computing it efficiently.)

This talk: Renormalization group (RG)
approach to classifying Boolean functions.

Renormalization group transformations and
phase transitions in condensed matter systems

example: magnet
Ferromagnet: spins aligned
Paramagnet: spins random
RG: eliminate spins, creating
“effective interactions”
between remaining spins

L. Kadanoff, 1966; K. Wilson, 1970

Renormalization group transformations and
phase transitions in condensed matter systems

example: magnet
Ferromagnet: spins aligned
Paramagnet: spins random
RG: eliminate spins, creating
“effective interactions”
between remaining spins

L. Kadanoff, 1966; K. Wilson, 1970

Renormalization group transformations and
phase transitions in condensed matter systems

example: magnet
Ferromagnet: spins aligned
Paramagnet: spins random
RG: eliminate spins, creating
“effective interactions”
between remaining spins

L. Kadanoff, 1966; K. Wilson, 1970

Renormalization group transformations and
phase transitions in condensed matter systems

example: magnet
Ferromagnet: spins aligned
Paramagnet: spins random
RG: eliminate spins, creating
new configuration with
(possibly) different “effective
interactions”

L. Kadanoff, 1966; K. Wilson, 1970

Renormalization group transformations and
phase transitions in condensed matter systems

example: magnet
Ferromagnet: spins aligned
Paramagnet: spins random
RG: eliminate spins, creating
new configuration with
(possibly) different “effective
interactions”

L. Kadanoff, 1966; K. Wilson, 1970

Recall RG transformation applied to individual
configurations of Ising model for a magnet

K.G. Wilson, Scientific American 241(2), 158 (1979)

T>Tc
(paramagnet)
flow is to
disordered
configuration

T<Tc
(ferromagnet)
flow is to
configuration
with all spins
aligned

replace 3x3 block by
single spin

Using the renormalization group to classify
Boolean functions

• Recall that renormalization group
transformations eliminate degrees of freedom

• A transformation that can be applied to any
Boolean function f(x1,x2,…,xN):

f(x1,x2,…,xN) ⇒ f(0,x2,…,xN) ⊕ f(1,x2,…,xN)

transforms function of N variables into one of
N-1 variables

⊕ = addition modulo 2

RG transformation yields “fixed point”
behavior for generic Boolean functions.

• Generic Boolean function: for each input
configuration, the output is chosen independently and
randomly to be either 1 or 0 with equal probability

• Apply RG: each output of every resulting function is
independently and randomly chosen to be 1 or 0

• RG yields a fixed point ⇒ there is a “generic phase”

f(x1,x2,…,xN) ⇒ f(0,x2,…,xN) ⊕ f(1,x2,…,xN)

RG maps “typical” Boolean function to another
“typical” Boolean function: fixed point behavior

“typical” function -- output for each input chosen independently
& randomly to be zero or one with equal probability

original function

N=14

after 2
renormalizations

N=12

after 6
renormalizations

N=8

after 4
renormalizations

N=10

RG “flow” in “generic phase”

Start with function in which output value for given
input is 1 with probability p0, and values are chosen
independently and randomly.

⇒ pj+1=2pj(1-pj) (pj=value of p after j applications of RG)

pj

j

pj →1/2 as j→∞

“Flow” to generic fixed point upon
application of the RG

N=14
prob (black)=0.04
frac(black)=0.0402

after 2
renormalizations

N=12
frac(black)=0.141

after 4
renormalizations

N=10
frac(black)=0.388

after 6
renormalizations

N=8
frac(black)=0.473

e.g., function where output values are independently and
randomly chosen to be one with probability p=0.04

Some functions are non-generic
(as seen by behavior upon renormalization)

• Polynomials of order ξ: RG yields zero after ξ+1
iterations

• Functions of composite variables:
– “are more than half the inputs nonzero?” (majority)

• RG yields a series of functions that are nonzero for a fraction
of inputs ∝1/√N

– “is number of nonzero inputs divisible by 3?”
• RG is nonzero for 2/3 of inputs (vs 1/2 for generic function)

– Behavior upon renormalization reflects fact that
functions depend on fixed combination of inputs

RG flow for low order polynomials is to
constant, so they are not in generic phase

original function

N=14

3rd order polynomial f=a0 ⊕ ∑bixi ⊕ ∑cijxixj ⊕ ∑dijkxixjxk

after 2
renormalizations

N=12

after 4
renormalizations

N=10

Some other functions do not “flow” to generic
fixed point upon application of the RG

N=14
frac(black)=0.333

after 2
renormalizations

N=12
frac(black)=0.667

after 4
renormalizations

N=10
frac(black)=0.666

after 6
renormalizations

N=8
frac(black)=0.664

e.g., function whose value is one if the number of nonzero
inputs is divisible by 3

Possible relations between phases
(defined by behavior upon repeated

application of RG transformation) and
computational complexity classes

Computational complexity: study of how
computational resources needed to solve a
problem grow with size of problem specification.

The complexity classes P and NP

P: Problems that can be solved in a number of
steps that grows no faster than polynomially with
the size of the problem specification
NP: Problems for which a solution can be
verified in a number of steps that grows no faster
than polynomially with the size of the problem
specification.

We know that problems in P are easy to solve.
We think that some problems in NP are hard to solve.

Whether or not P is distinct from NP is a key
unanswered question in computational

complexity

http://www.ideosphere.com/fx-bin/Claim?claim=P!NP

Market for P=NP or P≠NP proven by 2010

Pr
ice

Time

Possible relevance of renormalization group
approach to characterizing P (problems that

can be solved in polynomial time)

all Boolean functions

low order
polynomials

majority
Σxi mod 3

P is not a phase, but it is reasonable to conjecture that
functions in P are either in or close to non-generic phases

functions in P that
are close to low
order polynomials

Efficiently computable functions and phases
do not coincide

• There are any more low-order polynomials (with
order less than Nx with x<1) than there are
efficiently computable functions

• A polynomial with a few terms of all orders up to
N is efficiently computable, and appears to be in
generic phase (but there is a non-generic
function that yields the same output for all but a
small fraction of input configurations)

Intuition underlying conjecture that efficiently
computable functions are close to

nongeneric phases

• Typical functions yield nonzero output on very close to half
their input configurations

• Low order polynomials yield nonzero output on a significant
fraction of their input configurations, but are nongeneric
functions

• Products of O(N) variables yield nonzero output on an
exponentially small fraction of input configurations

• Efficiently computable combinations of products and sums
that result in functions that yield nonzero input on
significant fraction of input configurations exist —
conjecture is that restrictions on the combinations leads to
resulting function being non-generic (true for examples
such as MAJORITY, DIVISIBILITY MOD 3)

A big question

• Is it possible to prove that all functions in P are
in or near non-generic phases?

Summary

• A renormalization group (RG) approach similar
to the one used to characterize phase transitions
in condensed matter systems can be used to
classify Boolean functions.
– RG identifies functions in a generic phase

– RG identifies some functions that are in non-generic
phases

– P is not a phase, but it is a plausible conjecture that
functions in P are either in or close to non-generic
regions of the phase diagram.

