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Topological phases of matter Das Sarma, Freedman, Nayak, Simon, Stern 2007

“A system is in a topological phase if, at low temperatures,
energies, and wavelengths*, all observable properties (e.g.
correlation functions) are invariant under smooth deformations
(diffeomorphisms) of the spacetime manifold in which the system
lives.”

(i.e., all observable properties are independent of the choice of
spacetime coordinates).

[*] “By ‘at low temperatures, energies, and wavelengths’, we mean
that diffeomorphism invariance is only violated by terms which
vanish as ∼ max{e−∆/T , e−|x |/ξ} for some non-zero energy gap ∆
and finite correlation length ξ.”



How robust is really the topological protection?

Non locality ⇒ strong pro-
tection from zero-temperature
perturbations (non-local tun-
neling events are suppressed
exponentially in system size)

What about thermal fluctuations?

I above the energy barrier: no
topological protection

I there is no local order
parameter: ‘ordinary’
protection arguments (e.g.,
magnets) do not apply
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The topological entropy (I)

Given a system described by the ground state density matrix
ρ = |Ψ0〉〈Ψ0|

ρA = TrB ρ

SA = −Tr [ρA log ρA]

= αL− γ + . . .

where γ > 0 is a universal constant of global origin, dubbed the
topological entropy (Kitaev, Preskill 2006, Levin, Wen 2006)



The topological entropy (II) Levin, Wen 2006

The topological contribution γ can be obtained directly by
choosing the following four bipartitions

and taking an appropriate linear combination

Stopo ≡ lim
r ,R→∞

(−S1A + S2A + S3A − S4A) = 2γ

where each term is given by the Von Neumann (entanglement)
entropy of the corresponding bipartition
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The toric code (I) Kitaev 1997

H = −λA

∑
s

As − λB

∑
p

Bp

Bp =
∏
j∈p

σ̂z
j As =

∏
j∈s

σ̂x
j

where λA, λB are real, positive pa-
rameters

[Bp,Bp′ ] = 0 [As ,As′ ] = 0 [As ,Bp] = 0

One can diagonalise the Hamiltonian at the same time as the
N − 1 independent Bp operators, and N − 1 independent As

operators (N being the number of sites).
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The toric code (II)

The ground state is 4-fold degenerate 22N−2(N−1) = 4,

⇒ four topological sectors identified
by the eigenvalues of the non-local
operators

Γhor =
∏

i∈γhor

σ̂z
i Γvert =

∏
i∈γvert

σ̂z
i

Thor =
∏

i∈τhor

σ̂x
i Tvert =

∏
i∈τvert

σ̂x
i
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Finite T behaviour of the topological entropy (I)

ρ(0) = |Ψ0〉〈Ψ0| −→ ρ(T ) = e−βH/Z , yet one can obtain an
exact expression for both SA and Stopo CC + Chamon 2007

I at finite system size N and temperature T , Stopo is a function
of N ln[tanh(λA/B/T )] ∼ NT , and the N →∞ and T → 0
limits do not commute:

I if the thermodynamic limit is taken first, the topological
entropy vanishes identically

I if the zero temperature limit is taken first, we recover the
known result Stopo(T = 0) = 2 ln 2



Finite T behaviour of the topological entropy (II)

H = −λA

∑
s

∏
j∈s

σ̂x
j − λB

∑
p

∏
j∈p

σ̂z
j

(For finite N and as-
suming for simplicity
λA < λB)

The vanishing occurs
when the average
number of de-
fects in the system
approaches one:

N e
−λ

A/B
/T ∼ 1



Intuitive picture

order parameter to distinguish topological sectors:

at zero temperature T = 0:

Γ0 =

〈∏
i∈γ

σ̂z
i

〉
0

= ±1

independent of γ

→
at finite temperature T :

Γ(T ) =
1

Nγ

∑
{γ}

〈∏
i∈γ

σ̂z
i

〉
T

low energy defects:

plaquettes with Bp = −1

I they appear in pairs

I they are deconfined
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Intuitive picture

order parameter to distinguish topological sectors:

at zero temperature T = 0:

Γ0 =

〈∏
i∈γ

σ̂z
i

〉
0

= ±1

independent of γ

→
at finite temperature T :

Γ(T ) =
1

Nγ

∑
{γ}

〈∏
i∈γ

σ̂z
i

〉
T

Two (deconfined) defects im-
mediately spoil the order pa-
rameter: Γ(T ) ' 0

⇓
protection only if
NO defects at all!



Compare with a ferromagnetically ordered phase

at zero temperature T = 0:

M0 = 〈σ̂z
i 〉0

independent of i

→
at finite temperature T :

M(T ) =
1

N

∑
i

〈σ̂z
i 〉T

Thermal fluctuations act on individual spins, and
one needs a finite density of them to affect the
order parameter, which is therefore exponentially
protected: δM ∼ e−∆/T



Further considerations

I in the limit of λB →∞, λA → 0 (λB → 0, λA →∞), half of
the topological entropy is preserved at finite T , and the
system becomes a classical hard-constrained model ⇒
classical topological order CC + Chamon 2006
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the topological entropy is preserved at finite T , and the
system becomes a classical hard-constrained model ⇒
classical topological order CC + Chamon 2006

I the two contributions in the Hamiltonian (λA and λB) are in
fact additive:

SA(T ) = S
(P)
A (T/λB) + S

(S)
A (T/λA)

Stopo = S
(P)
topo(T/λB) + S

(S)
topo(T/λA)

The non-vanishing quantum topological entropy arises from the
plaquette and star terms in the Hamiltonian as two equal and

independent (i.e., classical) contributions



Conclusions from the 2D toric code

I topological order is fragile as
compared to Landau-Ginzburg
ordered systems with a gap

I in experiments, larger systems
give higher topological quantum
protection, but require
T ∼ 1/ lnN to be safe from
thermal fluctuations

I the topological nature of this model has a classical origin

I quantum mechanics arises from the ability to create coherent
superpositions
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What about three dimensions? CC + Chamon (in preparation)

I on a simple cubic lattice, the plaquette operators remain
planar (4-spin) terms, but the star operators become
three-dimensional (6-spin) terms

H = −λA

∑
s

∏
i∈s

σ̂x
i − λB

∑
p

∏
i∈p

σ̂z
i



Membranes vs Loops (I)

I on a simple cubic lattice, the plaquette operators remain
planar (4-spin) terms, but the star operators become
three-dimensional (6-spin) terms

I the dual loop structure is replaced by closed membranes on
the dual lattice



Membranes vs Loops (II)

I on a simple cubic lattice, the plaquette operators remain
planar (4-spin) terms, but the star operators become
three-dimensional (6-spin) terms

I the dual loop structure is replaced by closed membranes on
the dual lattice

I non-local operators distinguishing the different sectors are
winding loops and winding membranes

fragile ROBUST!



Finite temperature behavior

The two contributions (λA and λB) are again additive:

SA(T ) = S
(P)
A (T/λB) + S

(S)
A (T/λA)

⇓
Classical origin of topological information is confirmed (no need for

hard constraints in 3D)



From qubits to pbits

The quantum topological information becomes probabilistic
(classical) topological information at finite temperature:

I the loop sectors are still well defined

I loss of membrane contribution ⇒ loss of coherence within
each sector

|Ψ(T = 0)〉 = ψ1

∑
α∈1

|α〉+ ψ2

∑
α′∈2

|α′〉+ ...

T 6= 0 :


P1(T ) = |ψ1|2

P2(T ) = |ψ2|2

...
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Conclusions

I quantum topological order is proteced (e−∆/T ) from thermal
fluctuations by the presence of a finite gap...

I ... but the nature of the protection is radically different from
locally ordered systems

I in particular, the protection gets weaker for larger systems!

I the topological nature of these quantum systems can be
interpreted as the result of classical topological structures

I the quantum nature originates from the ability to create
coherent superpositions

Can we use our intuition on classical systems to engineer /
investigate new classes of quantum topologically ordered systems?

What about quantum Hall states and other topologically ordered
systems in the continuum?
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