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Introduction

message-passing: now standard method in various domains (coding,

physics, computer vision, computational biology....)

linear programming (LP) relaxation: standard method in computer

science, operations research etc.

turn out to be numerous connections between these two classes of
methods

some useful features of LP relaxation:

— certificates of correctness

— hierarchies of relaxations (guaranteed improvement; increased cost)
— distinct conceptual perspective on message-passing

— alternative avenue to finite-length results




Outline

1. Background
e Motivation
e First-order (tree-based) relaxation for combinatorial optimization

e Connections to physics and message-passing

2. LP relaxation for LDPC decoding

e past and on-going work
e constant fraction in adversarial setting

e notion of dual witness

3. Probabilistic analysis of LP decoding
e combinatorial characterization via hypergraph flow
e improved dual witness: generalized (p, q) matchings

e “almost-always” expansion




Combinatorial optimization on factor graphs

e consider a combinatorial optimization problem with objective
defined by factor graph G = (V, F)

ry T2 T3 X4 Ts T Ty TS V= wvariable nodes
F = factor nodes
E = variable—factor edges
a
e variable z; € {0,1,...,m — 1} associated with node i € V

e local cost ¥, (xy(4)) at factor a over variable neighbors V' (a)

e coal: maximize cost formed by product of factors

agmax G(r) = arg _ max {me H¢a<xv<a>>}.

0,1,....m—1}n» .
r€{ m—1} 1€V a€EF




From integer program to equivalent moment problem

1. Cost function is additive over graph structure:

F* = max F(x) = max {Zlog vi(x;) + Z logwa(aﬁN(a))} :

reXm
eV a€F

2. Reformulate as equivalent optimization over probability

distributions g with support over x € X"

= max > p [Z log ¥ (z;) + Zlog%(ww(a>)] -

TEXM eV acF

3. Reformulate again as equivalent optimization over globally
consistent marginal distributions {u;,i € V'} U {4, a € F'}:

F* o= max [ZZui(ﬂci)logwi(wi) + ) Zua(wa)logwa(wma))] ~

eV ox; acF x4




Marginal polytope for graphical model

e How hard is to an integer program (IP) on the graph G?

e Lquivalent question: how hard is to characterize the marginal
polytope?

Marginal polytope for factor graph G = (V, F):

wi(-) = local marginal over x;, i€V
pa(-) = local marginal over xn(,) at factor a, a € F
MARG(G) = {wi,i €V, and pg,a € F' | (1i,pta) consistent with global ¢(-)}.

e MARG(G) has O(n) facets for trees
o O(m'n) facets for graphs of treewidth ¢
e super-exponential # facets for general graphs

(DezLau97, WaiJor03)




Tree-based (1*-order) LP relaxation

e impose local normalization constraints on each pseudo-marginal ;

Y pilw) =1

e impose local marginalization constraints on each factor

pseudomarginal p,:

Z :ua(xN(a)) — Mj(xj>'

i, i€EN(a)\J

e combined with non-negativity constraints, call resulting polytope

LOCAL;+(G)
Some observations:
1. For any tree, LOCAL,(T) = MARG(T).
2. For general graphs, MARG(G) € LOCAL;:(G)




Codeword polytope

Definition: The codeword polytope CH(C) C [0, 1]" is the convex hull
of all codewords

CH(C) = {ue [0,1)" | s = Y p(x)
xeC
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e the codeword polytope is always contained within the unit

hypercube [0, 1]™

e vertices correspond to codewords




First-order relaxation for decoding

B
S N

e cach parity check a € C' defines a local codeword polytope
LOCALl(a)

e first-order relaxation obtained by imposing all local constraints:

LOCALl(C> = maEC LOCALl(a,)




Illustration of fractional vertex
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The pseudocodeword is locally-consistent for each check = it belongs
to the first-order relaxed polytope LOCAL; (C).




Some connections to physics and message-passing

e relaxed polytope LOCAL;(G) is constraint set in the Bethe
variational principle (YedFreWei02)

e Kikuchi and cluster variational principles: exploit higher-order

relaxations LOCALg(G) in a hypertree sequence

e for any tree T', max-product (Viterbi) is a dual algorithm for
solving linear program over LOCAL (T

e general connection between ordinary max-product and relaxed LP?
not valid in general (WaiJaaWil05)

e zero-temperature limits of sum-product — LP solutions?

not in general, but valid for “convexified” entropy approximations




Tree-reweighted max-product algorithm
Modified message update from node ¢ to node s: (WaiJaaWil02)

reweighted messages

i,

oy B T
vE t)\s
Mt8<$s) < k Inax {wst(x&mt)} o ¢t(x;5) (1—pts)
(S ~ - [ Mi ()] "
reweighted potential opposite message

Properties:
1. Modified updates have same complexity as standard updates.
e Messages are reweighted with ps; € [0, 1].

2. Key differences: e Potential on edge (s,t) is rescaled by ps: € [0, 1].

e Update involves the reverse direction edge.

3. The choice ps; = 1 for all edges (s,t) recovers standard update.




Reweighted max-product and linear programming

Theorem: For “suitable choice” of edge weights p., reweighted

max-product has the properties:

(a) Any fixed point M* for which the pseudo-max-marginals
T (1s) o Ps(xs) HteN(S)[Mts(ars)]pst have unique optimum

specifies an integral optimum LP solution. (WaiJaaWil05)

(b) For binary problems (with pairwise interactions), any fixed
point M* is an optimal solution to the dual LP.  (KolWai05).

Remarks:
1. Some convergence guarantees (but still relatively weak). (Kol06)

2. From case (b): reweighted max-product has same behavior as first-order
LP relaxation for various IPs (e.g., Ising ground states; min-cut;

matching; vertex cover).




Edge appearance probabilities

Experiment: What is the probability p. that a given edge e € E
belongs to a tree T' drawn randomly under p?

0 TS G & S O
O—CO D) D)
b b b b
©<; I O/< )
S\Q e e O
a) Original (b) p(T!) = % (c) p(T?) = % (d) p(T3) =
In this example: op = 1; Do = %7 pr = %

The vector pe = { pe | € € E } must belong to the spanning tree
polytope, denoted T(G).




§2. LP relaxation for decoding

e basic LP decoder: solve first-order LP relaxation (with cost vector
defined by channel) (FelWaiKar03)

~
M frac

LOC(C)

e two vertex types: integral (codewords) and fractional (pseudocodewords)

e channel-dependent pseudoweight governs performance:

k n
BSC pseudoweight = min {kz | Zx(,é) > Z zc(i)} :
1=1

1=k+1

2
AWGN pseudoweight I[l3

(EdlF




Some known results

empirical results on LP decoding: slightly better than max-product,
slightly worse than sum-product

LP decoding equivalent to message-passing for binary erasure
channel (stopping sets <= pseudocodewords)

positive result: LP pseudoweight grows linearly for expander codes
and the binary symmetric channel (Fel4-04)

negative result: sublinear LP pseudoweight for Gaussian channel
(KoeVon03, VonKoe05)

various extensions to basic LP algorithm

— adaptive LP decoding (TagSie06)
— stopping set redundancy for BEC (SchVar06)
— facet guessing (DimWai06)

— loop corrections for LP decoding (CheChe06)




Codes based on expander graphs

e previous work on expander codes (e.g., SipSpi02; BurMil02; BarZemO02)

e graph expansion: yields stronger results beyond girth-based analysis

e Definition: Let a € (0,1). A factor graph G = (V,C, F) is a
(a, p)-expander if for all subsets S C V with |S| < a|V]|, at least p|S|

check nodes are incident to S




Worst-case constant fraction for expanders

Theorem: Let C be an LDPC described by a factor graph
G with regular variable (bit) degree d,. Suppose that G is an
(av, ddy)-expander, where § > 2/3 +1/(3d,) and dd, is an integer.

Then the LP decoder can correct any pattern of %(Ozn) bit flips.
(FelMalSerSteWai, ISIT-04)

Comments:

e key technical device: notice of dual witness for LP success
— LP succeeds when 0" sent <= primal optimum p* =0

— suffices to construct dual optimal solution with ¢* = 0

e caveat: constant fraction very low (e.g., ¢ = 0.00017 for R = 0.5)

e potential gaps in the analysis
— analysis adversarial in nature

— dual witness relatively weak




Proof technique: Construction of dual witness

Primal LP: Vars. {p:, 1 € V}, {pa,g, a € F,J C N(a), |J|even}

min. Z(%ILLZ' S't°<JEC(a)

(/JLa,J Z 0

D, Mag =1

Z Ha,7 = Hv
\ J€C(a), J,=1

Dual LP: Vars. {v,, a € F'} {74, (i,a) € F'} unconstrained

max.

Z Va 8.t 4

acF

(S 7w >wa forall aeC,J C Cla),|J| even
i€s

Z Tia < 6; forallz € V
\a€EN (1)




Dual witness to zero-valued primal solution

e assume WLOG that 0™ is sent: suffices to construct a dual
solution with value ¢* = 0

e dual LP simplifies substantially as follows:

Dual feasibility: Find real numbers {7;,, (7,a) € E'} such that

Tia + Tja > 0 VaeC, andi,j € N(a)
Z Tia < 0 forallz €V

a€N(7)

e random weights 6, € R defined by channel; e.g., for binary

symmetric channel

9 1 with prob. 1 —p
Z —1 with prob. p




§3. Probabilistic analysis of LP decoding over BSC

Consider an ensemble of LDPC codes with rate R, regular vertex degree

d,, and blocklength n. Suppose that the code is a (v, (%) d,) expander.

Theorem: For each (R,d,,n), we specify fractions o« > 0 and error

exponents ¢ > 0 such that the LP decoder succeeds with probability

1 — exp(—cn) over the space of bit flips < |an]|.  (DasDimKarWai07)

Remarks:

e the correctable fraction « is always larger than the worst case

32 _2

dy
V.
p
2%—1

guarantee

e concrete example: rate R = 0.5, degree d,, = 8 and p = 6 yields a
correctable fraction o = 0.002.




Hyperflow-based dual witness

(DasDimKarWai07)

A hyperflow is a collection of weights
{Tia, (i,a) € E} such that:

(a) for each check a € F, exists some vy, > 0
and privileged neighbor i* € N(a) such that

—vq for i =21%

+vq for ¢ # 1%, -

Tia =

(b) > Tiq < 0;forallieV.
a€N (1)

Proposition: A hyperflow exists <—-

d a dual feasible point with zero value.

Hyperflow (epidemic) interpretation:
e cach flipped bit adds 1 unit of “poison”; each clean bit absorbs at most 1 unit

e cach infected check relays poison to all of its neighbors




Naive routing of poison may fail

overloaded hit De

Dirty checks N (D)

e need to route 1 unit of poison away from each flipped bit
e cach unflipped bit can neutralize at most one unit

e naive routing of poison can lead to overload




Routing poison via generalized matching

D

o= - o om m|mm mom n

[

Q. Q)
1

| 3 \\

Dirty checks N (D)

Definition: A (p, ¢)-matching is defined by the conditions:
(i) every flipped bit ¢ € D is matched with p distinct checks.

(ii) every unflipped bit j € D¢ matched with max{Z; — (dv — q), 0} checks
from N (D), where Z; = |[N(j) N N(D)|.




Generalized matching implies hyperflow

Lemma: Any (p,¢) matching with 2p + ¢ > 2d,, can be used

to construct a valid hyperflow.

Proof:

e construct hyperflow with each flipped bit routing v > 0 units to
each of p checks

e cach flipped bit can receive at most (d, — p)7y units from other
dirty checks (to which it is not matched)

e hence we require that —py+ (d, —p)y < —1,or v > 1/(2p—d,)

e cach unflipped bit receives at most (d, — q)y units so that we
need v < 1/(d, — q)




High-level overview of key steps

. Randomly constructed LDPC is “almost-always” expander
with high probability (w.h.p.)

e weaker notion than classical expansion: holds for larger sizes

e proof: union bounds plus martingale concentration

. Prove that an “almost-always” expander will have a
generalized matching w.h.p.

e requires concentration statements

e generalized Hall’s theorem
. Generalized matching guarantees existence of hyperflow.

. Valid hyperflow is a dual witness for LP decoding succcess.




Generalized matching and Hall’s theorem
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e by generalized Hall’s theorem, (p, ¢)-matching fails to exist if
only if there exist subsets S; € D and S, € D€ that contract:

IN(S1)U[N(S2) NN(D)]| < plSi|+ Z max {0,q — (dv — Z;)} .

\ . 4
-~

available matches total # requests




Analysis over a simpler random ensemble

analysis in standard ensemble: complicated due to coupling

between N (D) and number of requests from D¢

consider simplified (but equivalent) ensemble:

IN(D)|)

— each node in D chooses Z; ~ Bin(d,, =

— chooses a subset from N (D) of size Z;

LP error prob. (over random subset D) bounded by probability
of existing contractive subsets S; C D and Sy C D°:

IP’[H S1CD, S CD° | [N(S1)U[N(S2) N N(D)| <plSi|+ > R,

JES?

argument establishes existence of “almost-always expanders”
(with parameters much larger than worst-case sense)




Summary

e linear programming relaxations for optimization in graphical
models

— various connections to message-passing

— alternative route for non-asymptotic results

e probabilistic analysis of LP decoding for BSC
— hyperflow characterization of dual LP
— yields improved error-correction guarantees

— exploits “almost-always” expander (other applications?)

e various open directions:
— average-case analysis for other problems, ensembles?
— polytope structure for survey-propagation and SAT?

— guarantees on approximation hierarchies?




LP relaxation for “near-sub-modular” problems
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(a) Increased frustration (b) Increased coupling




