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Abstract

We describe a new remapping algorithm for use in arbitrary Lagrangian–Eulerian (ALE) simulations. The new fea-

tures of this remapper are designed to complement a staggered-mesh Lagrangian phase in which the cells may be gen-

eral polygons (in two dimensions), and which uses subcell discretizations to control unphysical mesh distortion and

hourglassing. Our new remapping algorithm consists of three stages. A gathering stage, in which we interpolate momen-

tum, internal energy, and kinetic energy to the subcells in a conservative way. A subcell remapping stage, in which we

conservatively remap mass, momentum, internal, and kinetic energy from the subcells of the Lagrangian mesh to the

subcells of the new rezoned mesh. A scattering stage, in which we conservatively recover the primary variables: subcell

density, nodal velocity, and cell-centered specific internal energy on the new rezoned mesh. We prove that our new

remapping algorithm is conservative, reversible, and satisfies the DeBar consistency condition. We also demonstrate

computationally that our new remapping method is robust and accurate for a series of test problems in one and two

dimensions.

� 2005 Elsevier Inc. All rights reserved.
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1. Introduction and background

In numerical simulations of multidimensional fluid flow, the relationship between the motion of the

computational grid and the motion of the fluid is an important issue. Two choices that are typically made
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represent either a Lagrangian framework, in which the mesh moves with the local fluid velocity, or an Eule-

rian framework, in which the fluid flows through a grid fixed in space. More generally, however, the motion

of the grid can be chosen arbitrarily. The philosophy of the arbitrary Lagrangian–Eulerian methodology

(ALE; cf. [14,3,4,20,15,16,26]) is to exploit this degree of freedom to improve both the accuracy and the

efficiency of the simulation. The main elements of most ALE algorithms are an explicit Lagrangian phase,
a rezone phase in which a new grid is defined, and a remap phase in which the Lagrange solution is trans-

ferred to the new grid [20].

Most ALE codes use a grid of fixed connectivity that, in two spatial dimensions, is formed by quadri-

laterals or by a mix of quadrilaterals and triangles, the latter being considered as degenerate quadrilaterals.

Ultimately, we are interested in the development of ALE methods for meshes whose connectivity may

change during the calculation. In such methods, the total number of cells remains fixed, but the number

of edges bounding each cell may change with time, leading to the appearance of general polygonal cells.

As a first step toward this goal, here we consider ALE methods on a mesh with fixed connectivity, but allow
the mesh to contain general polygonal cells. Extending the ALE methodology to this more general mesh is

valuable in itself as it simplifies the setup process for computational domains with complex geometrical

shapes and helps to avoid artificial mesh imprinting due to the restrictions of a purely quadrilateral mesh,

[6,7].

In the rest of this introductory section, we will present notation related to a general polygonal staggered

mesh, will review algorithms for the Lagrangian phase and rezone phase as presented in [8,9,17,28,33,32],

and finally will describe the main ideas of our new remap procedure, which is the main topic of this paper.

1.1. Polygonal mesh

We consider a two-dimensional computational domain X, assumed to be a general polygon. We assume

we are given a mesh on X whose cells, {c}, cover the domain without gaps or overlaps. Each cell may be a

general polygon, and is assigned an unique index that for simplicity will also be denoted by c. The set of

vertices (nodes) of the polygons is denoted by {n}, where each node has an unique index n. Then each cell

can be defined by an ordered set of vertices. We denote the set of vertices of a particular cell c by N(c).

Further, we denote the set of cells that share a particular vertex n by C(n). Note that each vertex may
be shared by an arbitrary number of cells. We will subdivide each cell into a set of quadrilaterals that

we will term subcells. A pair of indexes c and n uniquely defines a quadrilateral, identified as subcell cn;

this subcell is constructed by connecting the geometrical center of the cell c with the middle points of cell

faces having the same node n as one end point and the node itself (see Fig. 1). Hence each cell can be divided

uniquely into quadrilaterals (subcells or corners).

We denote the cell and subcell volumes (in 2D Cartesian geometry these are areas) by V(c) and V(cn),

where by construction V ðcÞ ¼
P

n2NðcÞV ðcnÞ. A nodal volume can be defined as the sum of the volumes of

subcells shared by the node n, i.e., V ðnÞ ¼
P

c2CðnÞV ðcnÞ.

1.2. Lagrangian phase

The equations of Lagrangian gas dynamics can be written as
1

q
dq
dt

¼ �divu; q
du
dt

¼ �gradp; q
de
dt

¼ �p divu; ð1:1Þ
where q is the density, p is the pressure, e is the specific internal energy, and u = (u,v) is the velocity. The

pressure is linked to density and specific internal energy via an equation of state: p = p(q, e). This system of

Eq. (1.1) is solved by the Lagrangian phase.
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Fig. 1. Grid and notations. The s are the cell centers, the d are the nodes (vertices), the h are the mid-face (edge) points. The set of

vertices for cell c = 12 is N(c = 12) = {5,2,1,4}, and the set of cells sharing node, n = 39 is C(n = 39) = {1,8,4}. The gray subcell,

cn = 6,12 is the quadrilateral defined by connecting the geometrical center of the cell c = 6 with middle points of cell faces having the

same node n = 12 as one end point and the node itself.
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A discretization of the gas dynamic equations for the Lagrangian phase of the ALE method for a mesh
consisting of general polygons is described in [8,9], based on the philosophy of compatible hydrodynamic

discretization [12]. This discretization assumes a staggered grid, where the components of the velocity vec-

tor are defined at the nodes (vertices) of the cells, u(n) = (u(n),v(n)), and where the thermodynamic variables

density q(c) and internal energy e(c) are defined at the cell centers. In addition to nodal and cell-centered

quantities, this discretization employs as additional variables the densities of the subcells, q(cn). The pres-

ervation of subcell mass during the Lagrangian phase of the calculation introduces new forces that prevent

artificial grid distortion and hourglass patterns. This enhancement of the Lagrangian algorithm was shown

to be effective both for quadrilateral meshes [10], as well as for polygonal meshes [8]. The Lagrangian phase
including subcell forces, is conservative; i.e., discrete forms of mass, momentum, and total energy are con-

served [12]. The use of subcell masses and corresponding densities places new requirements on the remap

phase of an ALE method because these subcell densities have to be remapped in addition to the usual

remapping of the primary variables—nodal velocities, cell-centered densities and internal energies.

We define the subcell mass in terms of the primary cell variables as follows:
mðcnÞ ¼ qðcnÞV ðcnÞ. ð1:2Þ

Then the mass of the cell and of the node are defined
mðcÞ ¼
X
n2NðcÞ

mðcnÞ; mðnÞ ¼
X
c2CðnÞ

mðcnÞ. ð1:3Þ
All of these masses are employed in the Lagrangian phase of our ALE method. Since the subcell mass,

m(cn) is assumed to be Lagrangian and so does not change with time, it follows that:
qðcnÞ ¼ mðcnÞ=V ðcnÞ; ð1:4Þ

which serves as a definition of the subcell density for a given subcell mass. The masses of the individual cells

and nodes are also Lagrangian because they are sums of the masses of the associated subcells. The mass of
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the cell is used in the equation for the internal energy, while the mass of the node is used in the momentum

equation. Finally, by definition we have
qðcÞ ¼ mðcÞ
V ðcÞ ¼

P
n2NðcÞmðcnÞP
n2NðcÞV ðcnÞ

.

The total mass, M, which is conserved in the Lagrangian phase is
M ¼
X
cn

mðcnÞ ¼
X
c

mðcÞ ¼
X
n

mðnÞ. ð1:5Þ
On the staggered mesh, momentum is most naturally defined at the nodes
lðnÞ ¼ mðnÞuðnÞ; mðnÞ ¼ mðnÞvðnÞ; ð1:6Þ

or equivalently
uðnÞ ¼ lðnÞ=mðnÞ; vðnÞ ¼ mðnÞ=mðnÞ. ð1:7Þ

Note that as a result of the remap stage we will have new momenta and masses at the nodes, so to re-

cover velocities we will use (1.7) as the definition of velocities for given momenta and nodal mass. The total

momentum components, lu, lv, which are individually conserved in the Lagrangian phase, are
lu ¼
X
n

mðnÞuðnÞ; lv ¼
X
n

mðnÞvðnÞ. ð1:8Þ
It will be useful to define a cell-centered momenta as
lðcÞ ¼
X
n2NðcÞ

mðcnÞuðnÞ; mðcÞ ¼
X
n2NðcÞ

mðcnÞvðnÞ. ð1:9Þ
Using this definition and the definition of nodal mass, the total momentum components (lu, lv)—see Eq.

(1.8)—can be expressed as
lu ¼
X
c

lðcÞ; lv ¼
X
c

mðcÞ. ð1:10Þ
Kinetic energy is also most naturally defined at the nodes
KðnÞ ¼ mðnÞ juðnÞj
2

2
. ð1:11Þ
The internal energy is naturally defined at the cells
EðcÞ ¼ mðcÞeðcÞ. ð1:12Þ

In analogy to (1.7), Eq. (1.12) can be used after the remap phase to define e(c) given EðcÞ and m(c)
eðcÞ ¼ EðcÞ=mðcÞ. ð1:13Þ

The total energy, which is also conserved in the Lagrangian phase, is
E ¼
X
c

EðcÞ þ
X
n

KðnÞ. ð1:14Þ
Later we will require the concept of a cell-centered kinetic energy, which we define as follows:
KðcÞ ¼
X
n2NðcÞ

mðcnÞ juðnÞj
2

2
. ð1:15Þ
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Using this definition and the definition of nodal mass, the total energy, E (see formula (1.14)), can be ex-

pressed as
E ¼
X
c

ðEðcÞ þ KðcÞÞ. ð1:16Þ
By introducing total internal and kinetic energies as
E ¼
X
c

EðcÞ; K ¼
X
c

KðcÞ; ð1:17Þ
we finally can express the total energy as
E ¼ Eþ K. ð1:18Þ
1.3. Rezone phase

In the rezone phase, we use the reference Jacobian matrix (RJM) strategy described in [17,28]. The RJM

rezone algorithm is based on a nonlinear optimization procedure that requires a valid mesh as an initial

guess, and so it may be necessary to untangle the mesh (see e.g., [33,32]) prior to rezoning. The RJM rezone

strategy ensures the continuing geometric quality of the computational grid, while keeping the ‘‘rezoned’’

grid at each time step as close as possible to the Lagrangian grid. Sets of cells and nodes of rezoned mesh

will be denoted by f~cg and f~ng, respectively.
When the rezoned and Lagrangian grids are sufficiently close to each other, it is possible to use a local

procedure on the remapping stage, meaning that mass, energy and momentum are exchanged only between
neighboring cells. Local rezoning is conceptually simpler and computationally less expensive than global

rezoning. For some of the tests presented in Section 7, we will use the ALE code in the Eulerian framework,

so that the rezoned mesh will always coincide with the initial mesh (see e.g., [25]).

1.4. Summary of the new remapping algorithm

To guarantee conservation in the overall ALE simulation, the remapping phase must conservatively

interpolate the Lagrange solution onto the rezoned grid. The main purpose of this paper is to describe a
new algorithm for remapping on a general, polygonal, staggered grid, including treatment of the density

defined in the subcells. Readers interested in the history of remapping methods on staggered meshes are

referred to [4,5,26,25,19,21,1,13,23].

To the best of our knowledge, there is no existing remapping method that addresses all of our require-

ments—remapping on a general polygonal staggered mesh with subcell densities.

We have designed a new remapping strategy consisting of the three following stages:

� First: Gathering stage. We define momentum, internal energy, and kinetic energy in the subcells. Recall
that the mass of subcell is already defined by (1.2). Mass, momentum, internal energy and kinetic energy

in the subcells are defined in such a way that the corresponding total quantities (defined as the sums over

subcells) are the same as those at the end of the Lagrangian phase, ensuring that the gathering stage is

conservative.

� Second: Subcell remapping stage. We use the algorithm described in [18] to remap mass, momentum,

internal, and kinetic energy from the subcells of the Lagrangian mesh to the subcells of the new rezoned

mesh. This algorithm is linearity-preserving and computationally efficient. It consists of a piecewise lin-

ear reconstruction and an approximate integration based on the notion of swept regions. The algorithm
does not require finding the intersections of the Lagrangian mesh with the rezoned mesh, which
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contributes to its efficiency. The algorithm is conservative: total mass, momentum, internal and kinetic

energy over subcells of the rezoned mesh are the same as mass, momentum, internal and kinetic energy

over subcells of Lagrangian mesh. The total energy is also conserved, being the sum of (individually con-

served) internal and kinetic energies. We suggest that remapping internal and kinetic energy separately is

more accurate than remapping total energy, because we are not combining two quantities that can have
very different magnitudes and behavior.

� Third: Scattering stage. We recover the primary variables—subcell density, nodal velocity, and cell-

centered specific internal energy—on the new rezoned mesh.

– Subcell density is recovered by using the remapped mass and volume of the subcell of the rezoned

mesh in Eq. (1.4). The subcell masses and the corresponding densities are then adjusted using a con-

servative repair procedure [18,29,21] to enforce local bounds, which may be violated during the sub-

cell remapping stage. This produces the final subcell density and the corresponding subcell mass that

will be used in next time step. The new nodal masses and the cell-centered masses are defined using
Eq. (1.2).

– Next, we define the remapped nodal momenta using the remapped subcell momenta, in such a way

that total momenta is conserved (see details in Sections 2 and 3). New velocity components are defined

according to (1.7). Then nodal velocity is repaired, resulting in the final velocity that will be used to

move the point during the Lagrangian phase in the next computational cycle.

– To enforce the conservation of total energy, the discrepancy between the remapped kinetic energy in

the cell and the kinetic energy that is computed from the remapped subcell masses and the final nodal

velocities is contributed to the remapped internal energy in the cell. The new internal energy is recov-
ered using (1.13). Finally, the internal energy and the corresponding specific internal energy are con-

servatively repaired.

The outline of the rest of this paper is as follows. In Section 2 we will give a precise statement of our

goals for remapping on the staggered mesh and will list the desired properties of the remapping algorithm.

In Section 3 we will define momentum, internal, and kinetic energy in the subcells of the Lagrangian mesh

(gathering stage). The properties of the remapping of subcell quantities from the Lagrangian mesh to the

rezoned mesh are briefly described in Section 4 (subcell remapping stage). The definition of the subcell den-

sity, nodal velocity and cell-centered specific internal energy on the rezoned mesh (scattering stage) is de-

scribed in Section 5 and in Appendix A. In Section 6, we prove that our new remapping algorithm is

conservative, reversible, and that the DeBar consistency condition for remapping of velocity [4] is satisfied.
Numerical results that demonstrate the accuracy and convergence of the remapping algorithm are pre-

sented in Section 7. Finally, we conclude the paper in Section 8.
2. Statement of the remapping

As a result of the Lagrangian phase of a computational cycle, we have a mesh consisting of cells {c},

and nodes {n}. We will call this the Lagrangian or old mesh. We have values of density, q(cn) in subcells,
values of specific internal energy, e(c), in cells, and values of the components of velocity, u(n), v(n), at the

nodes of the old mesh. As a result of the rezone phase, we have the rezoned or new mesh consisting of

cells f~cg, and nodes f~ng. An example of old and new meshes is given in Fig. 2. The goal of the remap-

ping phase is to find an accurate approximation to qðfcnÞ; eð~cÞ; uð~nÞ; vð~nÞ on the new mesh. Using the

primary variables we can define the total mass M, the momentum vector (lu, lv), the internal energy

E, the kinetic energy K, and the total energy E on the old mesh from Eqs. (1.5), (1.10), (1.17) and

(1.18), respectively.
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Fig. 2. Fragment of the Lagrangian (dotted lines) and the rezoned (solid lines) grids.
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The remapping algorithm must satisfy the following requirements:

� Conservation. The total mass, momenta and energy of the new mesh must be the same as that of the old

mesh
~M ¼ M ; ~lu ¼ lu; ~lv ¼ lv; ~E ¼ E.
This property, combined with the same conservation properties of the Lagrangian phase, guarantees the

conservation of the overall ALE method.

� Bound-preservation. The remapped density, velocity components and internal energy have to be con-

tained within physically justified bounds, which are determined from the corresponding fields in the
Lagrangian solution. For example, density and internal energy have to be positive. Moreover, because

we assume that the new mesh is obtained from a small displacement of the old mesh, one can require that

the new value lie between bounds determined by the values of its neighbors on the old mesh, [18].

� Accuracy. It is straightforward to define accuracy in the remap of density; we will require that the remap

of density is linearity-preserving. That is, if the values on the old mesh are obtained from a global linear

function, then the values on the new mesh have to coincide with the values of the same linear function on

the new mesh. For the remap of velocity, there are several different notions related to accuracy. For

example, one widely used test of consistency is the so-called DeBar condition (see for example [4]) which
can be stated as follows: if a body has a uniform velocity and spatially varying density, then the remap-

ping process should exactly reproduce a uniform velocity. For internal energy, the situation is more

complicated. We will demonstrate the accuracy of our new algorithm through the practical expedient

of well-chosen test problems.
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� Reversibility. If the new and old meshes are identical, then the remapped primary variables should show

no change. This property is closely related to the notion of being free of inversion error, see [4], where it

is stated that if the new and old grids coincide, then the remapped velocity on new mesh should coincide

with the velocity on the old mesh.
3. Gathering

In the gathering stage, we define mass (which is already known), momentum, internal energy, and kinetic

energy in the subcells: mðcnÞ; lðcnÞ; mðcnÞ; EðcnÞ;KðcnÞ such that the corresponding total quantities main-

tain the same values as they have at the end of the Lagrangian phase
Ms ¼def
X
cn

mðcnÞ ¼ M ;

ls
u ¼
def
X
cn

lðcnÞ ¼ lu; ls
v ¼
def
X
cn

mðcnÞ ¼ lv;

Es ¼def
X
cn

EðcnÞ ¼ E; Ks ¼def
X
cn

KðcnÞ ¼ K.

ð3:1Þ
Here the superscript s emphasizes that the corresponding total quantities are defined by summation over

subcells. Clearly, if we conserve the total kinetic and the total internal energy, then the total energy
Es ¼def Es þ Ks
is also conserved, i.e.,
Es ¼ E. ð3:2Þ

As follows from Eqs. (1.10) and (1.17), the total momenta, kinetic energy and internal energy can be

expressed by summation of the corresponding cell-centered quantities given by (1.9), (1.12) and (1.15). This

suggests the following design principle: construct the subcell quantities in such a way that conservation is

ensured on cell-by-cell basis. For example, the momentum components l(cn) satisfy the following equation:
X
n2NðcÞ

lðcnÞ ¼ lðcÞ; ð3:3Þ
and similarly for the other quantities. Thus all requirements of conservation listed in (3.1) will be satisfied.

We note that there is no unique solution for such a construction, because there is one constraint whereas

the number of unknowns is equal to the number of subcells in the given cell. For example, Eq. (1.9) suggests

that the simplest way to satisfy (3.3) is to define l(cn)
lðcnÞ ¼ mðcnÞuðnÞ. ð3:4Þ

However, this will not be accurate enough in general; e.g., in the case of a constant density, it will be exact

only for a constant velocity field. In the next section we will describe a more accurate algorithm, which in

the case of a constant density will be exact for any linear velocity field.

3.1. Definition of subcell momenta

We will present the procedure for defining the x-component of momentum l(cn), noting that the defini-

tion of the other component m(cn) is similar. Also, for brevity, we will refer to the velocity component u

simply as velocity. The total number of nodes (and hence of subcells) of the cell c is denoted by jN(c)j.
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We will use N instead of jN(c)j as we will never need to use a local indexing for two different cells at the

same time. The nodes of the cell under consideration are enumerated from 1 to N in counter-clockwise

order.

The subcell momenta will be defined as
Fig. 3.

the vec

the vec

local n
lðcnÞ ¼ mðcnÞuðcnÞ;

where u(cn)—yet to be defined—has the meaning of a subcell velocity, see Fig. 3 for illustration.

The subcell velocities u(cn) must be defined such that the total momentum of the cell, defined in (1.9), is

conserved, i.e.,
X
n2NðcÞ

mðcnÞuðcnÞ ¼
X
n2NðcÞ

mðcnÞuðnÞ ¼ lðcÞ. ð3:5Þ
As previously mentioned, a simple solution that satisfies (3.5) is to set u(cn) = u(n). However because

u(cn) has the meaning of a velocity in subcell, setting it to the velocity in the corresponding node will

not be accurate. Instead we seek a more accurate estimate of u(cn) in the form
uðcnÞ ¼ uðcÞ þ uðnÞ þ un;nþ þ un�;n
4

. ð3:6Þ
Here u(c) is not yet defined, and
un� ;n ¼
1

2
ðuðn�Þ þ uðnÞÞ; un;nþ ¼ 1

2
ðuðnÞ þ uðnþÞÞ ð3:7Þ
are the approximations of the velocities at the mid-edge points based on the velocities of the corresponding

nodes in the cell c (n� and n+ are the previous/next nodes with respect to n in the list of vertices of cell c, see

Fig. 4). The velocity u(c) has the meaning of a velocity at the cell center. Eq. (3.6) states that the velocity in
the center of subcell is a simple average of velocities in the corners of the subcell. Three of these velocities,

u(n), un;nþ ; un� ;n are known quantities and one, u(c), will be defined by conserving the momentum of the cell.
(u(23 ,1), u(23 ,4), u(23 ,2), u(23 ,7), u(23 ,9))

2

7
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t

U(23)=

U(23)=
s t
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9

Vectors U(c) and Us(c) for a given mesh. The numbers are the global indexes of the nodes. U(23) = (u(1),u(4),u(2),u(7),u(9))t is

tor of nodal velocities, for example u(7) is the velocity of node number 7. Us(23) = (u(23,1),u(23, 4),u(23,2),u(23, 7),u(23,9))t is

tor of subcell velocities, for example u(23, 2) is the velocity of the subcell uniquely defined by cell 23 and node number 2. The

eighbor nodes of n = 1 in cell 23 are n� = 9 and n+ = 4, the mid-edge points being called n, n� = 1,9 and n,n+ = 1,4.
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Fig. 4. Neighbor nodes of node n along the boundary of the cell c (using counterclockwise ordering) are n� and n+. The mid-edge

points are denoted as nn� and nn+.
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From (3.5) and (3.6) we obtain the following equation for u(c):
X
n2NðcÞ

mðcnÞ uðcÞ þ uðnÞ þ un;nþ þ un� ;n
4

� �
¼
X
n2NðcÞ

mðcnÞuðnÞ;
which is one equation with one unknown. Using the definitions of un;nþ and un�;n from (3.7), we derive a

formula for u(c):
uðcÞ ¼ 1

mðcÞ
X
n2NðcÞ

mðcnÞ 2uðnÞ � 1

2
uðnþÞ � 1

2
uðn�Þ

� �
. ð3:8Þ
An equivalent form of this definition is
uðcÞ ¼ 1

mðcÞ
X
n2NðcÞ

mðcnÞuðnÞ � 1

mðcÞ
X
n2NðcÞ

mðcnÞ uðn
þÞ � 2uðnÞ þ uðn�Þ

2
. ð3:9Þ
From this equation it is clear that if uðnÞ ¼ C then uðcÞ ¼ C; therefore in the case of constant velocity with

any arbitrary distribution of masses, our definition is exact. It is also easy to verify that if all the subcell

masses are the same, then
uðcÞ ¼ 1

jNðcÞj
X
n2NðcÞ

uðnÞ;
meaning that this formula is exact for a linear velocity field.

Substituting (3.8) into (3.6) yields
uðcnÞ ¼ 1

4
2uðnÞ þ uðnþÞ

2
þ uðn�Þ

2

� �
þ 1

4

1

mðcÞ
X
k2NðcÞ

mðckÞ 2uðkÞ � 1

2
uðkþÞ � 1

2
uðk�Þ

� �" #

¼ 1

4
2uðnÞ þ uðnþÞ

2
þ uðn�Þ

2

� �
þ
X
k2NðcÞ

mðckÞ
8mðcÞ 4uðkÞ � uðkþÞ � uðk�Þð Þ. ð3:10Þ
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The last term in (3.10) can be transformed as follows. First we split this term in three separate sums
X
k2NðcÞ

mðckÞ
8mðcÞ 4uðkÞ � uðkþÞ � uðk�Þð Þ ¼

X
k2NðcÞ

mðckÞ
8mðcÞ 4uðkÞ �

X
k2NðcÞ

mðckÞ
8mðcÞ uðk

þÞ �
X
k2NðcÞ

mðckÞ
8mðcÞ uðk

�Þ.
Now by shifting the index in second and third sum and combining the resulting expressions, we get
X
k2NðcÞ

mðckÞ
8mðcÞ4uðkÞ �

X
k2NðcÞ

mðck�Þ
8mðcÞ uðkÞ �

X
k2NðcÞ

mðckþÞ
8mðcÞ uðkÞ ¼

X
k2NðcÞ

uðkÞ �mðck�Þ þ 4mðckÞ �mðckþÞ
8mðcÞ

� �
.

ð3:11Þ

Finally, using (3.11) and (3.10) we get
uðcnÞ ¼ 1

4
2uðnÞ þ uðnþÞ

2
þ uðn�Þ

2

� �
þ

X
k2NðcÞ

uðkÞ �mðck�Þ þ 4mðckÞ � mðckþÞ
8mðcÞ

� �" #
. ð3:12Þ
(In Appendix A we present a 1D analog of the derivation of this formula for the subcell velocity.)

Eq. (3.12) defines the subcell velocities u(cn) in terms of the nodal velocities u(n). As a result of Eq. (3.8),

and the previously discussed properties of u(c), Eq. (3.12) is exact in the following cases:

� A constant velocity and an arbitrary mass distribution (this property will be used later to prove the

DeBar condition).

� An equal subcell mass distribution and a linear velocity.

Let us rewrite (3.12) for all n 2 N(c) in matrix form. To do this, we represent the velocities u(n) of the

vertices of one particular cell c as the elements of a vector U(c)
UðcÞ ¼ fuðnÞ; n 2 NðcÞgt. ð3:13Þ

Similarly, we represent the subcell velocities as the elements of a vector Us(c)
UsðcÞ ¼ fuðcnÞ; n 2 NðcÞgt.

A graphical illustration of these definitions of U(c), Us(c) is shown in Fig. 3. As a matter of notation, we will

use bold letters to denote column vectors while matrices will be denoted with a capital bold over-lined letter

as �Ic.
Now (3.12) can be rewritten in matrix form as follows:
UsðcÞ ¼ �IcUðcÞ; ð3:14Þ

where the matrix �Ic is
�Ic ¼
1

4
�

2 1
2

0 0 � � � 0 1
2

1
2

2 1
2

0 � � � 0 0

0 1
2

2 1
2

� � � 0 0

..

. ..
. ..

. ..
. . .

. ..
. ..

.

1
2

0 0 0 � � � 1
2

2

0BBBBBBB@

1CCCCCCCAþ

QN ;1;2 Q1;2;3 Q2;3;4 � � � QN�1;N ;1

QN ;1;2 Q1;2;3 Q2;3;4 � � � QN�1;N ;1

QN ;1;2 Q1;2;3 Q2;3;4 � � � QN�1;N ;1

..

. ..
. ..

. . .
. ..

.

QN ;1;2 Q1;2;3 Q2;3;4 � � � QN�1;N ;1

0BBBBBBB@

1CCCCCCCA. ð3:15Þ
Each element of the second matrix in (3.15) is formed from three consecutive subcell masses, and in terms of

the global indexing
Qn�;n;nþ ¼ �mðcn�Þ þ 4mðcnÞ � mðcnþÞ
8mðcÞ .
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In Appendix A we prove by construction that the matrix �Ic is always invertible, meaning that Eq. (3.14)

prescribes a one-to-one correspondence between the nodal and the subcell velocities in a given cell. As men-

tioned earlier, the fact that Eq. (3.12) is exact when uðnÞ ¼ C implies the following relations for the matrix
�Ic:
�IcC ¼ C; ð�IcÞ�1
C ¼ C; ð3:16Þ
where C is constant vector of length N, each of whose components equals C. Finally, by construction we

ensure that momentum is conserved in each cell, and therefore is conserved for the entire domain.

3.2. Definition of subcell kinetic energy

The subcell specific kinetic energy is denoted k(cn), and we will require that the total kinetic energy in the

cell c is conserved
X
n2NðcÞ

mðcnÞkðcnÞ ¼
X
n2NðcÞ

mðcnÞ juðnÞj
2

2
¼ KðcÞ. ð3:17Þ
If we represent the specific kinetic energies at the vertices and in the subcells of cell c as components of

vectors
kðcÞ ¼ kðnÞ ¼ juðnÞj2

2
; n 2 NðcÞ

( )t

; ksðcÞ ¼ kðcnÞ; n 2 NðcÞf gt; ð3:18Þ
then by definition
ksðcÞ ¼def �IckðcÞ. ð3:19Þ

and the subcell kinetic energy is finally given by
KðcnÞ ¼ mðcnÞkðcnÞ. ð3:20Þ

By construction the kinetic energy in each cell is preserved, ensuring that the kinetic energy of the entire

domain is preserved as well. We emphasize that
kðcnÞ 6¼ juðcnÞj2

2
;

because k(cn) and u(cn) are defined independently. Moreover we cannot set kðcnÞ ¼ juðcnÞj2
2

because this def-

inition would not conserve the kinetic energy in the cell.

3.3. Definition of subcell internal energy

The specific internal energy e is a cell-centered quantity. Thus the construction we developed for the

subcell velocity cannot be applied. Instead, we will define the subcell internal energy in the following
two steps:

(1) We will prescribe a linear reconstruction of the internal energy per unit volume in the cell c, which is

denoted (qe)c(x,y). This reconstruction:

� must be conservative in the cell, that is,Z
c
ðqeÞcðx; yÞdxdy ¼ EðcÞ ¼ qðcÞeðcÞV ðcÞ ¼ mðcÞeðcÞ. ð3:21Þ
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� must be exact when q(x,y)e(x,y) is a linear function.
(2) We will compute the subcell internal energy by integrating (qe)c(x,y) over the corresponding subcell.
In each cell c, the function (qe)c(x,y) has the form
ðqeÞcðx; yÞ ¼ qðcÞeðcÞ þ dcxðx� xcÞ þ dcyðy � ycÞ; ð3:22Þ
with (xc, yc) being the centroid of the cell
xc ¼
1

V ðcÞ

Z
c
xdxdy; yc ¼

1

V ðcÞ

Z
c
y dxdy.
We define the slopes dcx; d
c
y , by the Barth–Jespersen (BJ) algorithm [2]. The BJ algorithm is an algorithm for

piecewise linear reconstruction of a function f(x,y) given by its means �f c ¼ 1
V ðcÞ
R
cf ðx; yÞdxdy over mesh

cells. In cell c, function f(x,y) is represented by the linear function fc(x,y). The BJ algorithm has the follow-

ing properties:

� The mean of fc(x,y) over cell c is equal to the given mean value �f c, that is
1

V ðcÞ

Z
c
fcðx; yÞdxdy ¼ �f c.
� It is exact if f(x,y) is a global linear function, f(x,y) = a + bx + cy .

� In each cell c, the linear function fc(x,y) is constructed in a such a way that its values at the cell vertices

are within the bounds defined by the maximum and the minimum of the mean values over the set C(c),

consisting of cell c itself and its nearest neighbors. That is,
min
k2CðcÞ

�f k 6 fcðxn; ynÞ 6 max
k2CðcÞ

�f k; n 2 NðcÞ.
Details of the BJ algorithm can be found in [2] and in Appendix A of [22].

It is easy to verify that this reconstruction (3.22) is conservative because
Z
c
ðqeÞðx; yÞdxdy ¼

Z
c

qðcÞeðcÞ þ dcx x� xcð Þ þ dcy y � ycð Þ
� �

dxdy

¼ V ðcÞqðcÞeðcÞ þ dcx

Z
c
xdxdy � V ðcÞxc|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼0

8>><>>:
9>>=>>;þ dcy

Z
c
y dxdy � V ðcÞyc|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼0

8>><>>:
9>>=>>; ¼ mðcÞeðcÞ

¼ EðcÞ;
where the expressions in curly brackets are zero because of the definition of the centroid.

The subcell internal energy EðcnÞ is defined as the integral of (qe)c(x,y) over the subcell cn (step two of

the algorithm)
EðcnÞ ¼
Z
cn
ðqeÞcðx; yÞdxdy. ð3:23Þ
The internal energy over each cell is conserved because
EðcÞ ¼
Z
c
ðqeÞcðx; yÞdxdy ¼

X
n2NðcÞ

Z
cn
ðqeÞcðx; yÞdxdy

� �
¼
X
n2NðcÞ

EðcnÞ;
and in consequence, the internal energy is conserved over the entire domain.
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4. Subcell remapping

For the subcell remapping stage, we employ the algorithm described in [18] to remap mass, momentum,

internal, and kinetic energy from the subcells of the Lagrangian mesh to the subcells of the new rezoned

mesh. This algorithm produces values for the mass, momentum, internal energy, and kinetic energy in
the each of the subcells of the new mesh: mðfcnÞ; lðfcnÞ; mðfcnÞ;EðfcnÞ;KðfcnÞ. It is conservative, i.e.,
~M
s ¼def

X
ecn mðfcnÞ ¼ Ms;

~ls
u ¼
def
X
ecn lðfcnÞ ¼ ls

u; ~ls
v ¼
def
X
ecn mðfcnÞ ¼ ls

v;

~E
s ¼def

X
~cn

EðfcnÞ ¼ ~E
s
; ~K

s ¼def
X
~cn

Kð ~cnÞ ¼ ~K
s
;

ð4:1Þ
and linearity-preserving. Clearly, if the total kinetic and the total internal energy are conserved, then the

total energy
eEs ¼def ~Es þ ~K
s

is also conserved
~E
s ¼ Es. ð4:2Þ
For future analysis we note that when the new mesh coincides with the old mesh, then the subcell remap-

ping process does not change the subcell quantities. We want to emphasize that in this stage one could use

any other accurate conservative remapping algorithm for cell-centered (cells being the subcells in this con-

text) quantities.
5. Scattering

The third element of our algorithm is the scattering stage, in which we recover the primary variables—

i.e., subcell density, qðfcnÞ, nodal velocity, uð~nÞ; vð~nÞ, and cell-centered specific internal energy eð~cÞ – on the

new mesh. At the beginning of the scattering stage, we have the following subcell quantities on the new

mesh: mass mðfcnÞ, momenta lðfcnÞ; mðfcnÞ, internal energy EðfcnÞ and kinetic energy KðfcnÞ.
The scattering stage has to maintain conservation, meaning that the primary variables on new mesh must

satisfy the following conditions:
~M ¼
X
ecn mðfcnÞ ¼Xecn qðfcnÞV ðfcnÞ ¼ ~M

s
; ð5:1Þ

~lu ¼
X
~n

mð~nÞuð~nÞ ¼ ~ls
u; ~lv ¼

X
~n

mð~nÞvð~nÞ ¼ ~ls
v; ð5:2Þ

~E ¼
X
~c

Eð~cÞ þ Kð~cÞð Þ ¼
X
~c

mð~cÞeð~cÞ þ
X
~n2Nð~cÞ

mðfcnÞ juð~nÞj2
2

" #
¼ ~E

s þ ~K
s ¼ ~E

s
; ð5:3Þ
where
mð~cÞ ¼
X
~n2Nð~cÞ

mðfcnÞ; mð~nÞ ¼
X
~c2Cð~nÞ

mðfcnÞ. ð5:4Þ
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5.1. Definition of subcell density

The subcell density is recovered using Eq. (1.4),
qðfcnÞ ¼ mðfcnÞ=V ðfcnÞ.

The subcell masses and densities are then corrected using a conservative repair procedure [18] to reinforce

local bounds that may have been violated during the subcell remapping stage. Because we assume that the

rezoned grid is close to the Lagrangian grid, we choose the bounds for qðfcnÞ as the minimal and maximal

values of the subcell densities in the neighboring old subcells (i.e., before remapping). We will continue to

use the same notation qðfcnÞ;mðfcnÞ for the repaired quantities, and will employ the same convention for

other remapped and repaired quantities later in the paper.

5.2. Definition of nodal velocity

First, we define the new subcell velocity from subcell momenta and masses
uðfcnÞ ¼def lðfcnÞ
mðfcnÞ . ð5:5Þ
Next we define the nodal velocities, u~cð~nÞ, for ~n 2 Nð~cÞ with respect to cell ~c, by inverting Eq. (3.14), ap-

plied to the new mesh
Uð~cÞ ¼ ð�I~cÞ�1
Usð~cÞ; ð5:6Þ
with the formal vector notation
Uð~cÞ ¼ u~cð~nÞ; ~n 2 Nð~cÞ
� �t

; Usð~cÞ ¼ uðfcnÞ; ~n 2 Nð~cÞf gt.
We have introduced a new notation, u~cð~nÞ, because in general, Eq. (5.6) will give different results for the
same node ~n for different cells ~c. Note that the matrix �I~c is constructed using the final subcell masses of

the new mesh.

Finally, a unique nodal velocity at the node of the new cell can be defined
uð~nÞ ¼ 1

mð~nÞ
X
~c2Cð~nÞ

mðfcnÞu~cð~nÞ. ð5:7Þ
It is easy to show that momentum is conserved, i.e., ~lu ¼ ~ls
u. In fact,
~lu ¼
def
X
~n

mð~nÞuð~nÞ; ð5:8Þ
and the definition of u~cð~nÞ in (5.7), gives
X
~n

mð~nÞuð~nÞ ¼
X
~n

X
~c2Cð~nÞ

mðfcnÞu~cð~nÞ. ð5:9Þ
By changing the order of summation in right-hand-side of the previous equation we derive
X
~n

X
~c2Cð~nÞ

mðfcnÞu~cð~nÞ ¼X
~c

X
~n2Nð~cÞ

mðfcnÞu~cð~nÞ. ð5:10Þ
From the definition of u~cðnÞ we have
X
~n2Nð~cÞ

u~cð~nÞmðfcnÞ ¼ X
~n2Nð~cÞ

lðfcnÞ ¼ ~ls
u. ð5:11Þ
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From (5.8)–(5.11) we conclude that momentum is conserved
Fig. 5.

8, 7, th
~lu ¼ ~ls
u. ð5:12Þ
In the final step, velocity is repaired with respect to bounds chosen as the maximal and minimal values of

u(n) (i.e., values before remapping) over the following stencil (see Fig. 5):
n 2 [c2CðnÞ k 2 NðcÞf g.
After the repair stage, we obtain the final velocity at the nodes of the new mesh. This velocity will be used

in the Lagrangian phase in the next time step. The definition of the new nodal velocity by Eq. (5.7) intro-

duces dissipation, that is, the kinetic energy decreases. The repair process by itself conserves the total mo-

menta, but also can change the kinetic energy. The overall change in kinetic energy will be accounted for in

the definition of cell-centered specific internal energy. The final kinetic energy in the new cell is given by
Kð~cÞ ¼
X
~n2Nð~cÞ

mðfcnÞ juð~nÞj2
2

. ð5:13Þ
5.3. Definition of cell-centered specific internal energy

The final specific internal energy has to be defined to ensure the conservation of total energy. At this
stage of the scattering, we know the following quantities for each cell:

� the final kinetic energy Kð~cÞ in the cell evaluated from Eq. (5.13), in which the final velocities and the

final subcell masses are used;

� the remapped subcell internal energy EðfcnÞ, and the remapped subcell kinetic energy, KðfcnÞ.
By definition, the total energy in the cell is
Eð~cÞ ¼ Eð~cÞ þ Kð~cÞ; ð5:14Þ
1

5
4

7

11

12

23

16

27

39

9

2

15
17

7
8

1

4

6

12

The stencil for velocity repair. The stencil for node 12 (marked by solid square) consists of the union of the vertices of cells 6, 4,

at is, 1, 2, 4, 7, 11, 12, 15, 16, 17, 23, 27, 39, which are marked by solid circles.
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where Eð~cÞ is still unknown. If we define
Eð~cÞ ¼
X
~n2Nð~cÞ

EðfcnÞ þ KðfcnÞð Þ; ð5:15Þ
then the conservation of total energy is guaranteed because EðfcnÞ and KðfcnÞ are obtained as a result of a

conservative subcell remapping.

From Eqs. (5.15) and (5.14), we conclude that to conserve total energy, the new internal energy in the cell

must be defined as follows:
Eð~cÞ ¼
X
~n2Nð~cÞ

EðfcnÞ þ X
~n2Nð~cÞ

KðfcnÞ !
� Kð~cÞ

" #
. ð5:16Þ
The term in the square brackets can be interpreted as the distribution of the change in kinetic energy due to

the processes of defining and repairing the nodal velocities. The new specific internal energy is defined by

analogy with (1.13) as
eð~cÞ ¼ Eð~cÞ=mð~cÞ; ð5:17Þ

and in the final step, the specific internal energy is conservatively repaired.
6. Properties of the algorithm

6.1. Conservation

As we have proved in previous sections, mass, momentum, and total energy are all conserved at each

stage: gathering, subcell remapping, and scattering. Therefore,
eM ¼ eMs ¼ Ms ¼ M ;

~lu ¼ ~ls
u ¼ ls

u ¼ lu;elv ¼ elv
s ¼ ls

v ¼ lv;

~E ¼ ~E
s ¼ Es ¼ E.
That is, mass, momenta and total energy are conserved by the overall process.

6.2. Reversibility

Reversibility of the remapping means that if the new and old meshes are identical, then the primary vari-
ables will not be changed. Reversibility is a very important property that is related to the continuous depen-

dence of the change of primary variables between the old and the new meshes. As mentioned in Section 4,

there is no change in the subcell quantities during the subcell remapping stage if the new and old meshes are

identical, i.e.,
mðfcnÞ ¼ mðcnÞ; ð6:1Þ

lðfcnÞ ¼ lðcnÞ; mðfcnÞ ¼ mðcnÞ; ð6:2Þ

EðfcnÞ ¼ EðcnÞ; Kð ~cnÞ ¼ KðcnÞ. ð6:3Þ



122 R. Loubère, M.J. Shashkov / Journal of Computational Physics 209 (2005) 105–138
From (6.1) we can immediately conclude that the subcell density has not been changed
qðfcnÞ ¼ mðfcnÞ
V ðfcnÞ ¼ mðcnÞ

V ðcnÞ ¼ qðcnÞ.
Combining (6.1) and (6.2) with the definition of uðfcnÞ, we see that uðfcnÞ ¼ uðcnÞ, and therefore
Usð~cÞ ¼ UsðcÞ. ð6:4Þ

Also, (6.1), implies the matrix equality
�I~c ¼ �Ic. ð6:5Þ

We recall that by definition
UsðcÞ ¼ �IcUðcÞ. ð6:6Þ

Thus, combining (5.6), (6.5), (6.4) and (6.6) we derive
Uð~cÞ ¼ ð�I~cÞ�1
Usð~cÞ ¼ ð�IcÞ�1

UsðcÞ ¼ ð�IcÞ�1 � ð�IcÞUðcÞ ¼ UðcÞ. ð6:7Þ

Eq. (6.7) means that
u~cð~nÞ ¼ uðnÞ; ð6:8Þ

demonstrating that the old and new nodal velocities in node ~n (from the point of view of all cells sharing

this node) are the same. Now combining (5.7), (6.1) and (6.8), with the definition of m(n) in (1.2), we derive
uð~nÞ ¼ 1

mð~nÞ
X
~c2Cð~nÞ

mðfcnÞu~cð~nÞ ¼ 1

mðnÞ
X
c2CðnÞ

mðcnÞuðnÞ ¼ uðnÞ 1

mðnÞ
X
c2CðnÞ

mðcnÞ
 !

¼ uðnÞ; ð6:9Þ
demonstrating that the nodal velocity stays the same
uð~nÞ ¼ uðnÞ.

We next prove that eð~cÞ ¼ eðcÞ. Because of (5.17), it is sufficient to prove that
Eð~cÞ ¼ EðcÞ.

Using (5.16) and the fact that after the subcell remapping stage, the subcell internal and kinetic energies

are not changed, we derive
Eð~cÞ ¼
X
n2NðcÞ

EðcnÞ þ
X
n2NðcÞ

KðcnÞ
 !

� Kð~cÞ
" #

. ð6:10Þ
By construction
X
n2NðcÞ

EðcnÞ ¼ EðcÞ;
X
n2NðcÞ

KðcnÞ ¼ KðcÞ.
Therefore, from (6.10) we can conclude that
Eð~cÞ ¼ EðcÞ þ KðcÞ � Kð~cÞ½ �. ð6:11Þ

Finally, the expression in square brackets in (6.11) is zero, because of the definition of Kð~cÞ in (5.13), and

because uð~nÞ ¼ uðnÞ. Thus we have proved that Eð~cÞ ¼ EðcÞ, and so
eð~cÞ ¼ eðcÞ.

To summarize, we have demonstrated that all of the primary quantities before repair do not change if the

new mesh and the old mesh are the same. Further, the repair process does not change anything because all

variables are in bounds by definition, if the meshes are identical.
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6.3. DeBar consistency condition

As mentioned in Section 3.1, when the nodal velocity on the old mesh is constant fuðnÞ ¼ Cg the sub-

cell velocity on the old mesh is also constant, fuðcnÞ ¼ Cg. For a constant subcell velocity fuðcnÞ ¼ Cg,
it is true by definition that the subcell momentum on the old mesh is flðcnÞ ¼ C � mðcnÞg and the re-
mapped subcell momentum on the new mesh is flðfcnÞ ¼ C � mðfcnÞg. Now using (5.5) we get

fuðfcnÞ ¼ Cg. From the property of the matrix �I~c in (3.16) (which holds for both the old and new meshes)

and Eq. (5.6) we conclude that fu~cð~nÞ ¼ Cg. Finally, from Eq. (5.7), and because fu~cð~nÞ ¼ Cg, we derive

uð~nÞ ¼ C. Thus we have proved that the DeBar consistency condition is satisfied: if a body has an uni-

form velocity and a spatially varying density, then the remap procedure exactly reproduces this uniform

velocity.
7. Numerical results

In this section we will investigate numerically the performance of our new method. All problem are

solved in Cartesian coordinates (x,y).

Our remapping method is unique in the sense that it is intended for a staggered mesh of general polygons

using a subcell discretization of the density. As previously mentioned, we are not aware of any other

method that can treat such a remapping problem. However, we are still interested in comparing our new

remapping method with other known methods for remapping on a staggered mesh. To make such compar-
isons, we need to identify specific situations where both our new method and other existing methods can be

used. One such situation is the case of a 1D staggered discretization, where there are no polygons and there

is no hourglass phenomenon. Therefore, in Section 7.1.1, we consider several well-known 1D problems (i.e.,

where the solution depends only on x): Sod�s problem, [30,31]; the blast wave problem of Woodward and

Colella, [34,25]; and the LeBlanc shock tube problem, [4,25]. On this set of problems we will compare our

new method with three other methods: the Half-Interval-Shift (HIS) method, [3,4]; the Nodal Momentum

Remap (NMR) method, [25]; and the Method of Moments (MM), [19,4]. All three methods, HIS,NMR,

and MM employ only a cell-centered discretization for density (no subcells) and differ individually in
how velocity is remapped.

The 1D HIS method employs a remap of two cell-centered momenta, that are ‘‘momenta shifted’’

from the vertices of the corresponding cell, remapped, and then combined to recover unique velocities

at the vertices. The 1D MM employs a cell-centered remap of cell-centered momentum, (1.9), and dis-

crete derivative, du/dx � ou/ox, and then uses these to recover a unique velocity at the node. The

NMR method uses a dual mesh with vertices in the centers of the original cells to directly remap nodal

momentum. We will not discuss advantages and disadvantages of these methods, but refer the interested

reader to [4]. In our implementations of all these methods, after a unique velocity at each node is recov-
ered, a cell-centered specific internal energy is defined as described in Section 5.3. In all implementations,

repair is performed in the same way as described in Section 5. Also, in our 1D implementation of these

three methods, the Lagrangian phase is the same for all methods and is consistent with the methodology

described in [12] when all subcell densities are equal. In 1D there can be no hourglass deformation, and

so no hourglass treatment is necessary. To make the implementation of HIS, MM, and NMR, methods

comparable to our method, we also have arranged the order of computations similarly to our method. In

all three methods the flux limiter remapper is used with the specific choice of the Barth–Jespersen limiter

[2]. We apply all methods in an Eulerian framework, which is described as ‘‘Eulerian as Lagrange Plus
Remap’’, [25].

In Section 7.1.2, we will use the same set of 1D test problems to investigate numerically the conver-

gence properties of our new algorithm, always in the Eulerian framework. In Section 7.2, we will use
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the well-known 2D Sedov blast wave problem to demonstrate the performance of our new method on

both logically rectangular and polygonal meshes. This problem can be run in pure Lagrangian

regime as well, and we will use Lagrangian results as a reference. For this problem we will present re-

sults for both the Eulerian framework and also for an ALE method using the RJM rezone strategy,

[17,28].

7.1. One-dimensional tests

For all 1D test problems we use our new method implemented in a 2D code, but run on an initially

square mesh with only two cells in y direction. The length of the computational domain in the y direction,

ymax, depends on number of cells in x direction (in the x direction initial mesh is always uniform). In our

description of the test problems, we will specify only the length of computational domain and the number

of cells in the x direction. It is interesting that our numerical experiments produce almost identical results
(at the resolution presented) for the MM, the HIS and the NMR methods. For this reason we present only

results obtained by NMR method.

7.1.1. Comparison with other methods

7.1.1.1. Sod problem. The Sod problem is a Riemann shock tube with a relatively small discontinuity, and so

is very mild test. Its solution consists of a left moving rarefaction, a contact discontinuity and a right mov-

ing shock; the exact solution is illustrated in Fig. 6 by the solid line.

In our numerical experiments, the computational domain is 1 P x P 0. The discontinuity is initially at
0.5. The domain is filled with an ideal gas with c = 1.4. The density/pressure values on the left side of the

discontinuity are 1.0/1.0, while those on the right side are 0.125/0.1. In Fig. 6, we present numerical results

for the density at the final time t = 0.25 for a run with Nx = 200 computational cells. The results obtained by

our new method and by the NMR method are very close, but the resolution of the contact discontinuity is

slightly better for our method.

7.1.1.2. Woodward–Colella blast wave problem. The computational domain for this problem has length one,

with reflecting walls at the both ends. The gas is an ideal gas with c = 1.4. At t = 0., the gas is at rest with an
uniform density equal to 1.0. The initial pressure is 1000.0 in the leftmost tenth of the domain, 100.0 in the

rightmost tenth, and 0.01 everywhere else. The final problem time is t = 0.038. Initially, two shocks and two

contacts develop at the initial discontinuities and propagate toward one another, while two rarefactions de-

velop, propagate toward the walls, and reflect off them. As time progresses, these six initial waves interact

and create additional contact discontinuities. There is no analytical solution for this problem and typically

a solution obtained by purely Lagrangian method with very high resolution (Nx = 3600 cells in our case) is

considered as the reference ‘‘truth’’ (the solid line in Fig. 7). As has been mentioned in [25], the Lagrangian

solution has a flaw, a spurious overshoot at x � 0.765. In Fig. 7 we present numerical results obtained by
NMR and our new method for Nx = 1200.

A discussion of the results obtained by the NMR method can be found in [25]. It appears that, at least

for the density, our method gives better results for this problem. We note however that the difference in the

results is accentuated by the use of the Barth–Jespersen limiter. When the minmod limiter is used in both

methods, the results are much closer. In presenting these results, we note that in our 2D code, we use the

Barth–Jespersen limiter most typically.

7.1.1.3. LeBlanc shock tube problem. In this extreme shock tube problem, the initial discontinuity separates
a region of very high energy and density from one of low energy and density. This is a much more severe

test than the Sod Problem. The computational domain is 9 P x P 0 and is filled with an ideal gas with

c = 5/3. The gas is initially at rest. The initial discontinuity is at x = 0.3: (q,e) = (1,0.1) for x < 3 and
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(0.001 · 10�7) for x > 3. The solution consists of a rarefaction moving to the left, and a contact disconti-

nuity and a strong shock moving to the right—solid line in Fig. 8. At the final time of t = 6.0, the shock

wave is located at x = 7.975. In Fig. 8 we present numerical results obtained by NMR and our new method

for Nx = 1400. In comparison with the NMR method, our new method gives a more accurate position of

the contact discontinuity, but shows a larger, relatively narrow, overshoot at the contact. The position of

the shock is slightly more accurate for the NMR method.
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The numerical results presented in this subsection demonstrate that, on these 1D problems, our new

method shows comparable performance to other known remapping methods on a staggered mesh, i.e.,
the nodal momentum remap method, the half-interval-shift method, and the method of moments.

7.1.2. Convergence tests

In this subsection we investigate numerically the convergence of our new method for the 1D test prob-

lems described in the previous section. Recall that all these problems are run in the Eulerian framework.

7.1.2.1. Sod problem. In Fig. 9 we present the exact solution and numerical results for the density for res-

olutions Nx = 50,100,200. In Table 1 we present the L1 errors for density and corresponding estimates for
the convergence rate, which is close to 2.
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Table 1

Sod problem

Nx L1 Error Convergence rate

50 5.63E�4 –

100 1.52E�4 1.88

200 4.22E�5 1.87

400 1.17E�5 1.85

800 3.23E�6 1.86

1600 8.77E�7 1.88

Errors and convergence rate.
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7.1.2.2. Woodward–Colella blast wave problem. In Fig. 10 we graphically demonstrate the convergence rate
for the Woodward–Colella blast wave problem on the set of meshes with resolutions Nx = 300,600,1200.

We present numerical results both for density and for specific internal energy. Because there is no analytical

solution for this problem we do not present a table with convergence rates.

7.1.2.3. LeBlanc shock tube problem. In Figs. 11 and 12 we present numerical results and the exact solution

for the specific internal energy and pressure for the LeBlanc shock tube problem. The convergence rate is

analyzed in Table 2. Table 2 demonstrates approximately first-order convergence for the specific internal

energy. We note here that the initial spatially uniform mesh for LeBlanc problem creates 103 jump in
the masses of the cells adjacent to initial discontinuity, which implies a loss of accuracy in the Lagrangian

stage at the beginning of calculation. This explains the observed low order of convergence in comparison

with the Sod problem.

In summary, the numerical results presented for the Sod problem, the Woodward–Colella blast wave

problem, and the LeBlanc shock tube problem, indicate a convergence rate between first and second order.

7.2. Two-dimensional tests

In this subsection we present numerical results for the Sedov blast wave problem, [27], which de-

scribes the evolution of a blast wave in a point symmetric explosion; it is an example of a diverging
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Table 2

LeBlanc problem

Nx L1 Error Convergence rate

180 7.39E�2 –

360 3.38E�2 1.13

720 1.60E�2 1.08

1440 7.79E�3 1.04

2880 3.84E�3 1.02

Errors and convergence rate.
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shock wave. We consider the cylindrically symmetric Sedov problem, in Cartesian coordinates (x,y).
The total energy of the explosion is concentrated at the origin and has magnitude Etotal = 0.244816

(similar to [9]). The material is an ideal gas with c = 1.4 and initially is at rest with an initial density
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equal to 1. At time t = 1.0 the exact solution is a cylindrically symmetric diverging shock whose front is

at radius, r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
¼ 1 and has a peak density of 6.0 (the solid line in Fig. 14). In our numerical

experiments Etotal is concentrated in one cell located at the origin (that is, containing the vertex

(x,y) = (0,0)). The specific internal energy of this cell, c is defined as e(c) = Etotal/V(c). Therefore the

initial pressure is p = (c � 1)qe = 0.4Etotal/V(c). For this problem we compare results obtained by our
2D code in three different frameworks: a purely Eulerian, a purely Lagrangian, and an ALE frame-

work. Simulations in all three frameworks have been carried out on both quadrilateral and polygonal

meshes. In the ALE calculation, the rezoning/remapping is performed once every 10 Lagrangian steps.

The CFL number is chosen to be equal to 0.25 for all simulations. For each simulation we show both

the initial and the final mesh, with 11 density isolines equally distributed in magnitude between 0.0 and

6.0. (Figs. 13 and 15). Each isoline has a label that refers to a density value in the legend scale. Also we

show a 1D plot of density as a function of the radius, r, and a corresponding plot of the exact solution

(Figs. 14 and 16). The 1D plots demonstrate how well the numerical solution preserves cylindrical
symmetry.
7.2.1. Quadrilateral meshes

For this set of simulations, the computational domain is a square ðx; yÞ 2 ½0 : 1.2� � ½0 : 1.2� whose

initial mesh consists of 31 · 31 square cells (top-left mesh in Fig. 13). The two top panels in Fig. 13

and the left panel in Fig. 14 shows the results of purely Eulerian computations. The symmetry of

the solution is preserved quite well but the density peak is diminished (qmax = 3.55 instead of 6) and

the shock wave is spread over several cells. The two panels in the middle of Fig. 13 and the central
panel in Fig. 14 shows the results of purely Lagrangian computations. The peak density magnitude,

4.9, is much closer to the correct value than is the Eulerian computational value. Also, the symmetry

is better preserved in the Lagrangian calculation, especially near the peak. However, the Lagrangian

mesh has a very low geometrical quality near the axis. The two bottom panels in Fig. 13 and right

panel in Fig. 14 shows results of the ALE computations. The symmetry of the solution is even better

than was found in the Lagrangian calculations and the peak density is 4.75 which is little bit smaller

than in the Lagrangian calculations. The geometrical quality of the mesh is significantly improved in

comparison with the Lagrangian case. In the top part of Table 3 we present the peak density values
and also the number of time steps needed to reach the final time of t = 1.0 for the Eulerian, Lagrangian

and ALE computations. It is interesting to note that the ALE computation takes the least number of

time steps.

The ratio between the CPU time spent for the Eulerian regime versus the Lagrangian regime is �10, be-

tween the ALE regime and the Lagrangian one is �2. We remark that these timing comparisons are

strongly dependent on the details of implementation and are presented to the reader as very ‘‘rough’’

estimates.

7.2.2. Polygonal meshes

The computational domain is one quarter of a circular disk with radius of rmax = 1.2. A polygonal mesh

is constructed in the computational domain using a Voronoi diagrams (see for example, [24]) for the set of

point defined as follows:
xi;j ¼ rj sinðhi;jÞyi;j ¼ rj sinðhi;jÞ; j ¼ 1; . . . ; J ; i ¼ 1; . . . IðjÞ.
where
rj ¼ rmax �
j� 1

J
; IðjÞ ¼ roundððj� 1Þ p

2
Þ; hi;j ¼

i� 1

IðjÞ � p
2
; J ¼ 31.
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and function round(x) returns the closest integer to x. According to these formulas, on each circle of radius

rj points are distributed so that the distance between adjacent points along the circle is approximately equal

to Dr = rmax/(J � 1). The total number of points is 775. There is exactly one Voronoi cell corresponding to
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Fig. 15. Sedov problem—polygonal mesh. Mesh (left), and density isolines (right) at t = 1.0—Eulerian regime (top), Lagrangian

regime (middle), ALE regime (bottom).
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each point. The mesh consists of a mixture of convex polygons: quadrilaterals, pentagons and hexagons,
and the total number of vertices is 1325; the mesh is shown in Fig. 15 (top-left panel). The resulting polyg-

onal mesh has approximately the same resolution as the quadrilateral mesh presented in Fig. 13. Numerical



Table 3

Sedov problem

# of time steps Peak density Mesh type

Eulerian 477 3.55 Quad

Lagrangian 375 4.90 Quad

ALE-10 338 4.75 Quad

Eulerian 1567 3.69 Poly

Lagrangian 603 6.20 Poly

ALE-10 408 5.70 Poly

Number of time steps needed to reach final time t = 1.0 and peak density values.
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results for the initially polygonal mesh are arranged in a similar way as was done for our study of the quad-

rilateral meshes and are presented in Figs. 15 and 16, and bottom of Table 3. Qualitatively, the relative per-

formance of purely Eulerian, purely Lagrangian, and ALE methods on polygonal meshes is the same as for

quadrilateral meshes. The results of the purely Eulerian and purely Lagrangian calculations on the polyg-

onal mesh exhibit less symmetry than the corresponding calculations on the quadrilateral meshes. However,

the polygonal mesh behaves better near the axes even for purely Lagrangian calculations. In this case the

ratio between the CPU time spent for the Eulerian versus the Lagrangian regimes is �20 and between the

ALE and Lagrangian regime �2.
8. Conclusion

In this paper we have constructed a full ALE method for use on a staggered polygonal mesh. The

method combines and generalizes previous work on the Lagrangian and rezoning phases, and includes a

new remapping algorithm.

In the Lagrangian phase of the ALE method we use compatible methods to derive the discretizations
[8,9]. We assume a staggered grid where velocity is defined at the nodes, and where density and internal

energy are defined at cell centers. In addition to nodal and cell-centered quantities, our discretization em-

ploys subcell masses that serve to introduce special forces that prevent artificial grid distortion and hour-

glass-type motions, [10]. This adds an additional requirement to the remap phase—that the subcell densities

(corresponding to subcell masses) have to be conservatively interpolated in addition to nodal velocities and

cell-centered densities and internal energy.

In the remap phase, we assume that the rezone algorithm produces mesh that is ‘‘close’’ to Lagrangian

mesh so that a local remapping algorithm (i.e., where mass and other conserved quantities are only ex-
changed between neighboring cells) can be used.

Our new remapping algorithm consists of three stages.

� A gathering stage, where we define momentum, internal energy, and kinetic energy in the subcells in a

conservative way such that the corresponding total quantities in the cell are the same as at the end of

the Lagrangian phase.

� A subcell remapping stage, where we conservatively remap mass, momentum, internal, and kinetic energy

from the subcells of the Lagrangian mesh to the subcells of the new rezoned mesh.
� A scattering stage, where we conservatively recover the primary variables: subcell density, nodal velocity,

and cell-centered specific internal energy on the new rezoned mesh.
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Fig. 16. Sedov problem—polygonal mesh. Density at t = 1.0 as a function of the radius (solid line exact solution)—Eulerian regime

(top), Lagrangian regime (middle), ALE regime (bottom).
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We have proved that our new remapping algorithm is conservative, reversible, and satisfies the DeBar

consistency condition.

We have also demonstrated computationally that our new remapping method is robust and accurate for

a series of test problems in one and two dimensions.



R. Loubère, M.J. Shashkov / Journal of Computational Physics 209 (2005) 105–138 135
Acknowledgements

The authors thank L. Margolin, B. Rider, S. Li, B. Wendroff, R. Anderson, R. Pember, D. Benson, and

T. Dey for fruitful discussions. Special thanks go to K. Lipnikov for developing the procedure for the ana-

lytical inversion of matrices described in Appendix A.
This work was performed under the auspices of the US Department of Energy at Los Alamos National

Laboratory, under contract W-7405-ENG-36. The authors acknowledge the partial support of the DOE/

ASCR Program in the Applied Mathematical Sciences and the Laboratory Directed Research and Devel-

opment program (LDRD). The authors also acknowledge the partial support of DOE�s Advanced Simu-

lation and Computing (ASC) program.
Appendix A. Details of the velocity gathering

Invertibility: Here we present a constructive proof of the invertibility of �Ic (see Eq. (3.15)). The analytical
inversion can be performed by taking into account the specific form of the matrix �Ic, and then rewriting �Ic
into the form
�Ic ¼ �Sþ wrt; ðA:1Þ

where
�S ¼ 1

4

2 1
2

0 0 � � � 0 1
2

1
2

2 1
2

0 � � � 0 0

0 1
2

2 1
2

� � � 0 0

..

. ..
. ..

. ..
. . .

. ..
. ..

.

1
2

0 0 0 � � � 1
2

2

0BBBBBBB@

1CCCCCCCA; ðA:2Þ
and
w ¼ ð1; 1; . . . ; 1Þt; r ¼ ðQN ;1;2;Q1;2;3; . . . ;QN�1;N ;1Þ
t
. ðA:3Þ
Lemma. �Ic is invertible and ð�IcÞ�1 is given by the following formula:
�Ic
	 
�1 ¼ �S

�1 � wrt�S
�1
. ðA:4Þ
Proof. Let us first remark that
�Sw ¼ 3

4
w; ðA:5Þ
and
rtw ¼ðQN ;1;2;Q1;2;3; . . . ;QN�1;N ;1Þ.ð1; 1; . . . ; 1Þ
t ¼

XN
n¼1

Qn�;n;nþ ðA:6Þ

¼ 1

8mðcÞ
XN
n¼1

ð�mðcn�Þ þ 4mðcnÞ � mðcnþÞÞ ðA:7Þ

¼ 1

8mðcÞ
XN
n¼1

2mðcnÞ ¼ 2mðcÞ
8mðcÞ ¼

1

4
. ðA:8Þ
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Now we verify that �Icð�IcÞ�1 ¼ �E, where �E is the identity matrix
�Ic �Ic
	 
�1 ¼ �Sþ wrt

	 

�S
�1 � wrt�S

�1
� �

¼ �E� �Sw
	 
|ffl{zffl}
¼3=4w

rt�S
�1 þ wrt�S

�1 � w rtwð Þ|ffl{zffl}
¼1=4

rt�S
�1

¼ �Eþ � 3

4
þ 1� 1

4

� �
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

¼0

wrt�S
�1 ¼ �E.
Therefore �Ic is invertible and ð�IcÞ�1
is given by Eq. (A.4). h

The matrix �S can be exactly inverted for every size (recall that the dimension of �S is 3 if cell c is a triangle,

4 for a quadrilateral cell, etc). So once inverse matrices have been stored for every reasonable integer, then

ð�IcÞ�1
can be easily computed using Eq. (A.4).

1D Analog: The meaning of formula (3.12) becomes more clear in 1D, where it is more natural to re-

turn to standard notations, Fig. 17. For nodes, we will use integer indexes, i,i + 1 and so on. For cells, we

will use half indexes, such that cell with end nodes i,i + 1 has index i + 1/2. Subcells , cn, now will be

denoted like i + 1/2, i. Also in 1D we will use of subscripts. For instance, nodal velocities are denoted

by ui, ui+1, cell-centered velocities are ui + 1/2, and subcell velocities are ui,i+1/2 and similar for other

quantities.

In the 1D boundary of cell c = i + 1/2 consists of two nodes n� = i, n+ = i + 1. The subcell velocities are

defined as follows (analog of formula (3.7))
uiþ1
2
;i ¼

ui þ uiþ1
2

2
; uiþ1

2
;iþ1 ¼

uiþ1
2
þ uiþ1

2
. ðA:9Þ
This is a natural definition because subcell velocity is associated with the center of the subcell and it is

natural to define it as an average of the velocities of the subcell end points.

The 1D analog of formula (3.5) is
miþ1
2
;iuiþ1

2
;i þ miþ1

2
;iþ1uiþ1

2
;iþ1 ¼ miþ1

2
;iui þ miþ1

2
;iþ1uiþ1. ðA:10Þ
The formulas (A.9) and (A.10) give the following definition of cell-centered velocity (analog of

(3.8))
uiþ1
2
¼

miþ1
2
;iui þ miþ1

2
;iþ1uiþ1

miþ1
2
;i þ miþ1

2
;iþ1

; ðA:11Þ
which is just the mass average of nodal velocities. One also can consider this formula as result of linear

interpolation of momentum between nodes. Finally, using definition (A.9) and formula (A.11) we obtain
the following expressions for subcell velocities (analog of formula (3.12)):
u uui i+1i+1/2

u u i+1/2 ,i+1/2 , i i+1

Fig. 17. Illustration to 1D velocity gathering.
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uiþ1
2
;i ¼

1

2
ui þ

1

2

1

miþ1
2

miþ1
2
;iui þ miþ1

2
;iþ1uiþ1

� �" #
;

uiþ1
2
;iþ1 ¼

1

2
uiþ1 þ

1

2

1

miþ1
2

miþ1
2
;iui þ miþ1

2
;iþ1uiþ1

� �" #
.

In 1D the matrix �Ic, (3.15), is
�Ic ¼
1

2

1 0

0 1

� �
þ 1

2miþ1
2

miþ1
2
;i miþ1

2
;iþ1

miþ1
2
;i miþ1

2
;iþ1

 !
¼ 1

2miþ1
2

2miþ1
2
;i þ miþ1

2
;iþ1 miþ1

2
;iþ1

miþ1
2
;i miþ1

2
;i þ 2miþ1

2
;iþ1

 !
.

The determinant of this matrix is equal to 1/2 and therefore it is invertible.
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